Numerical Study on Hydrodynamic Behavior of an Underwater Glider

Author(s):  
Surasak Phoemsapthawee ◽  
Marc Le Boulluec ◽  
Jean-Marc Laurens ◽  
Franc¸ois Deniset

Underwater gliders are AUVs used in ocean exploration and observation. They use small changes in their buoyancy to dive and to return to the ocean surface. During the change of altitude, they use the hydrodynamic forces developed by their wings to move forward. Their flights are controlled by changing the position of their centers of gravity and their buoyancy to adjust their trim and their heel angles. For better flight control, the understanding of the hydrodynamic behavior and the flight mechanics of the underwater glider is necessary. A 6-DOF motion simulator is coupled with a BEM code for this purpose. In some specific cases, the numerical study demonstrates that an inappropriate stabilizer dimension can cause a counter-steering behavior. The simulator can be used to improve the automatic flight control. It can also be used for the hydrodynamic design optimization of the devices.

2021 ◽  
Vol 28 (2) ◽  
pp. 4-17
Author(s):  
Xiangcheng Wu ◽  
Pengyao Yu ◽  
Guangzhao Li ◽  
Fengkun Li

Abstract Underwater gliders are winged, autonomous underwater vehicles that are broadly applied in physical and biological oceanography. The position of the wing has an important effect on the movement performance of the underwater glider. In this paper, the dynamic motion of a series of underwater glider models with different longitudinal wing positions are simulated, which provides guidance for the design of underwater gliders. The results show that when the net buoyancy is constant, the wing position affects the gliding angle, but does not affect the relationship between the gliding angle and the gliding speed. In addition, the farther the wing position of the glider is from the buoyancy centre, the longer it takes for the attitude of a glider to change, whether the wing is in front of, or behind, the buoyancy centre.


2020 ◽  
Vol 70 (2) ◽  
pp. 214-220
Author(s):  
R.V. Shashank Shankar ◽  
Rajagopalan Vijayakumar

 Autonomous underwater gliders are a class of underwater vehicles that transit without the help of a conventional propeller. The vehicle uses a buoyancy engine to vary its buoyancy and with the help of the wings attached executes its motion. The hydrodynamic characteristics of the vehicle affect the longitudinal and turning motion. This paper discusses the effect of the wing’s position on the vehicle’s lift and drag characteristics. Computational fluid dynamics (CFD) tool is used to estimate the lift, drag, and pitching moment coefficients of the vehicle. The numerical methodology is validated using flow over NACA0012 wing results for low Reynolds numbers, and the results of CFD are discussed for possible application in estimation of glider motion.


2021 ◽  
pp. 1-17
Author(s):  
B. Nugroho ◽  
J. Brett ◽  
B.T. Bleckly ◽  
R.C. Chin

ABSTRACT Unmanned Combat Aerial Vehicles (UCAVs) are believed by many to be the future of aerial strike/reconnaissance capability. This belief led to the design of the UCAV 1303 by Boeing Phantom Works and the US Airforce Lab in the late 1990s. Because UCAV 1303 is expected to take on a wide range of mission roles that are risky for human pilots, it needs to be highly adaptable. Geometric morphing can provide such adaptability and allow the UCAV 1303 to optimise its physical feature mid-flight to increase the lift-to-drag ratio, manoeuvrability, cruise distance, flight control, etc. This capability is extremely beneficial since it will enable the UCAV to reconcile conflicting mission requirements (e.g. loiter and dash within the same mission). In this study, we conduct several modifications to the wing geometry of UCAV 1303 via Computational Fluid Dynamics (CFD) to analyse its aerodynamic characteristics produced by a range of different wing geometric morphs. Here we look into two specific geometric morphing wings: linear twists on one of the wings and linear twists at both wings (wash-in and washout). A baseline CFD of the UCAV 1303 without any wing morphing is validated against published wind tunnel data, before proceeding to simulate morphing wing configurations. The results show that geometric morphing wing influences the UCAV-1303 aerodynamic characteristics significantly, improving the coefficient of lift and drag, pitching moment and rolling moment.


Author(s):  
Majeed Mohamed ◽  
Madhavan Gopakumar

The evolution of large transport aircraft is characterized by longer fuselages and larger wingspans, while efforts to decrease the structural weight reduce the structural stiffness. Both effects lead to more flexible aircraft structures with significant aeroelastic coupling between flight mechanics and structural dynamics, especially at high speed, high altitude cruise. The lesser frequency separation between rigid body and flexible modes of flexible aircraft results in a stronger interaction between the flight control system and its structural modes, with higher flexibility effects on aircraft dynamics. Therefore, the design of a flight control law based on the assumption that the aircraft dynamics are rigid is no longer valid for the flexible aircraft. This paper focuses on the design of a flight control system for flexible aircraft described in terms of a rigid body mode and four flexible body modes and whose parameters are assumed to be varying. In this paper, a conditional integral based sliding mode control (SMC) is used for robust tracking control of the pitch angle of the flexible aircraft. The performance of the proposed nonlinear flight control system has been shown through the numerical simulations of the flexible aircraft. Good transient and steady-state performance of a control system are also ensured without suffering from the drawback of control chattering in SMC.


2018 ◽  
Vol 35 (8) ◽  
pp. 1665-1673 ◽  
Author(s):  
Daniel L. Rudnick ◽  
Jeffrey T. Sherman ◽  
Alexander P. Wu

AbstractThe depth-average velocity is routinely calculated using data from underwater gliders. The calculation is a dead reckoning, where the difference between the glider’s velocity over ground and its velocity through water yields the water velocity averaged over the glider’s dive path. Given the accuracy of global positioning system navigation and the typical 3–6-h dive cycle, the accuracy of the depth-average velocity is overwhelmingly dependent on the accurate estimation of the glider’s velocity through water. The calculation of glider velocity through water for the Spray underwater glider is described. The accuracy of this calculation is addressed using a method similar to that used with shipboard acoustic Doppler current profilers, where water velocity is compared before and after turns to determine a gain to apply to glider velocity through water. Differences of this gain from an ideal value of one are used to evaluate accuracy. Sustained glider observations of several years off California and Palau consisted of missions involving repeated straight sections, producing hundreds of turns. The root-mean-square accuracy of depth-average velocity is estimated to be in the range of 0.01–0.02 m s−1, consistent with inferences from the early days of underwater glider design.


2021 ◽  
Vol 71 (5) ◽  
pp. 709-717
Author(s):  
Venkata Shashank Shankar Rayaprolu ◽  
R Vijayakumar

Autonomous underwater gliders (AUG) are a class of underwater vehicles that move using a buoyancy engine and forces from wings. Gliders execute turning motion with the help of a rudder or an internal roll control mechanism and the trajectory of the turn is a spiral. This paper analyses the sensitivity of the characteristics of spiral manoeuvre on the hydrodynamic coefficients of the glider. Based on the dynamics model of a gliding fish whose turn is enabled by a rudder, the effect of hydrodynamic coefficients of the hull and the rudder on the spiral motion are quantified. Local sensitivity analysis is undertaken using the indirect method. The order of importance of hydrodynamic coefficients is evaluated. It is observed that the spiral path parameters are most sensitive to the side force created by the rudder and the effect of the drag coefficient is predominant to that of the lift coefficients. This study will aid in quantifying the effect of change of geometry on the manoeuvrability of AUGs.


2018 ◽  
Vol 52 (3) ◽  
pp. 19-27 ◽  
Author(s):  
Ruoying He ◽  
Austin C. Todd ◽  
Chad Lembke ◽  
Todd Kellison ◽  
Chris Taylor ◽  
...  

AbstractAn autonomous underwater glider was deployed in March 2014 to sample the Gulf Stream and its adjacent shelf waters in the South Atlantic Bight, providing a new look at cross-shelf exchange associated with Gulf Stream dynamics. Observations collected over 4 weeks reveal significant cross-shelf exchange (up to 0.5 Sv) at the shoreward edge of the Gulf Stream, which was 2 orders of magnitude larger than estimates from long-term mean hydrographic conditions. Gulf Stream frontal eddies may have contributed to some of the largest fluxes of heat (0.5°C Sv) and salt (0.03 Sv g/kg) onto the shelf. We estimate that the largest upwelling event during the mission could have brought nitrate concentrations over 20 μM to within 125 m of the surface. This study demonstrates clear capabilities of autonomous underwater gliders for sampling in and near fast moving boundary currents to obtain unique and critical in situ observations effectively.


2019 ◽  
Vol 16 (155) ◽  
pp. 20190118 ◽  
Author(s):  
Wouter G. van Veen ◽  
Johan L. van Leeuwen ◽  
Florian T. Muijres

Most flying animals produce aerodynamic forces by flapping their wings back and forth with a complex wingbeat pattern. The fluid dynamics that underlies this motion has been divided into separate aerodynamic mechanisms of which rotational lift, that results from fast wing pitch rotations, is particularly important for flight control and manoeuvrability. This rotational force mechanism has been modelled using Kutta–Joukowski theory, which combines the forward stroke motion of the wing with the fast pitch motion to compute forces. Recent studies, however, suggest that hovering insects can produce rotational forces at stroke reversal, without a forward motion of the wing. We have conducted a broad numerical parametric study over a range of wing morphologies and wing kinematics to show that rotational force production depends on two mechanisms: (i) conventional Kutta–Joukowski-based rotational forces and (ii) a rotational force mechanism that enables insects with an offset of the pitch axis relative to the wing's chordwise symmetry axis to generate rotational forces in the absence of forward wing motion. Because flying animals produce control actions frequently near stroke reversal, this pitch-axis-offset dependent aerodynamic mechanism may be particularly important for understanding control and manoeuvrability in natural flyers.


Sign in / Sign up

Export Citation Format

Share Document