A Comparative Study of Motion Performance of Four Different FOWT Designs in Combined Wind and Wave Loads

Author(s):  
Yasunori Nihei ◽  
Kazuhiro Iijima ◽  
Motohiko Murai ◽  
Tomoki Ikoma

This paper summarizes our recent collaborative/competitive works on floating offshore wind turbines (FOWTs) among four universities including Osaka Prefecture Univ., Osaka Univ., Yokohama National Univ., and Nihon Univ. The tasks assigned to each member were to develop the respective FOWT designs which could support 5MW class wind turbine, then to fabricate a scale model based on their own concept, and finally to evaluate the performance by tank tests under prescribed environmental (wind and wave) conditions. Osaka Prefecture Univ. adopted TLP concept, Yokohama National Univ. semi-submersible concept, Nihon University SPAR concept while Osaka Univ. also adopted semi-submersible, however, with single-point mooring. All the measured data were collected and compared among the four designs. It turned out that: (1) All the proposed deigns suffice criteria in terms of motion performance which were assumed at the beginning of the study. (2) The TLP type shows the most favorable performance among the four while the SPAR type shows largest acceleration in almost all the range of environmental conditions. The large acceleration may pose a problem of maintainability. (3) The SPAR type suffers the gyration effects more than the other types. (4) The RAOs of motions under combined wind and wave loads are almost the same as those under only wave loads for all the concepts but the single-point moored semisubmersible. (5) The difference of the RAOs for the single-point moored semisubmersible may be ascribed to the larger coupling effects between the main floater and the mooring system under the combined loads.

Author(s):  
F. Adam ◽  
T. Myland ◽  
F. Dahlhaus ◽  
J. Großmann

The paper will present the preliminary design of the so called GICON® - Tension Leg Platform (TLP) as an innovative foundation concept for floating offshore wind turbines. Preliminary results from model basin tests are also shared. This includes the currently ongoing research of comparing calculated and experimental data obtained through extensive wind and wave tank experiments with a scale model of an offshore wind turbine at the Maritime Research Institute Netherlands (MARIN) in June 2013. These tests have provided insights regarding the dynamic characteristics of the GICON®-TLP by analyzing the system’s response to different load cases. The experiments included wind and wave loads, which represent three different sea states, each with three different directions of inflow. The chosen load cases correspond to the proposed location in the German Baltic Sea where the full scale prototype will be erected.


Author(s):  
Kazuhiro Iijima ◽  
Yuiko Kuroda ◽  
Yasunori Nihei ◽  
Motohiko Murai

This paper addresses the weathervane performance of Floating Offshore Wind Turbines (FOWTs) moored to single-point mooring (SPM) systems. A system of equations of motion to describe the motions in horizontal plane around the mooring point in the combined environmental conditions is derived. Wind, wave and current loads are considered. Two types of SPM-FOWT systems proposed by the present authors are considered for comparison. It is found out that the weathervane performance of the SPM-FOWT systems is acceptable in a point that the power generation efficiency does not reduce significantly. The stability is also checked based on the eigenvalue analysis for the linearized equations of motion around the equilibrium point. The stability and the responsivity are discussed in comparison between the two systems. Sensitivity of the stability and responsivity to design parameters such as length between the buoy and the main floater to the turning motion performance is discussed, too.


2020 ◽  
Vol 8 (11) ◽  
pp. 859
Author(s):  
Thanh-Dam Pham ◽  
Hyunkyoung Shin

Floating offshore wind turbines (FOWTs) have been installed in Europe and Japan with relatively modern technology. The installation of floating wind farms in deep water is recommended because the wind speed is stronger and more stable. The design of the FOWT must ensure it is able to withstand complex environmental conditions including wind, wave, current, and performance of the wind turbine. It needs simulation tools with fully integrated hydrodynamic-servo-elastic modeling capabilities for the floating offshore wind turbines. Most of the numerical simulation approaches consider only first-order hydrodynamic loads; however, the second-order hydrodynamic loads have an effect on a floating platform which is moored by a catenary mooring system. At the difference-frequencies of the incident wave components, the drift motion of a FOWT system is able to have large oscillation around its natural frequency. This paper presents the effects of second-order wave loads to the drift motion of a semi-submersible type. This work also aimed to validate the hydrodynamic model of Ulsan University (UOU) in-house codes through numerical simulations and model tests. The NREL FAST code was used for the fully coupled simulation, and in-house codes of UOU generates hydrodynamic coefficients as the input for the FAST code. The model test was performed in the water tank of UOU.


Author(s):  
Michael Borg ◽  
Anthony Viselli ◽  
Christopher K. Allen ◽  
Matthew Fowler ◽  
Christoffer Sigshøj ◽  
...  

Abstract As part of the process of deploying new floating offshore wind turbines, scale model testing is carried out to de-risk and verify the design of novel foundation concepts. This paper describes the testing of a 1:43 Froude-scaled model of the TetraSpar Demo floating wind turbine prototype that shall be installed at the Metcentre test facility, Norway. The TetraSpar floating foundation concept consists of a floater tetrahedral structure comprising of braces connected together through pinned connections, and a triangular keel structure suspended below the floater by six suspension lines. A description of the experimental setup and program at the Alfond W2 Ocean Engineering Lab at University of Maine is given. The objective of the test campaign was to validate the initial design, and contribute to the development of the final demonstrator design and numerical models. The nonlinear hydrodynamic characteristics of the design are illustrated experimentally and the keel suspension system is shown to satisfy design criteria.


Energies ◽  
2019 ◽  
Vol 12 (4) ◽  
pp. 703 ◽  
Author(s):  
Juhun Song ◽  
Hee-Chang Lim

In this study, the typical ocean environment was simulated with the aim to investigate the dynamic response under various environmental conditions of a Tension Leg Platform (TLP) type floating offshore wind turbine system. By applying Froude scaling, a scale model with a scale of 1:200 was designed and model experiments were carried out in a lab-scale wave flume that generated regular periodic waves by means of a piston-type wave generator while a wave absorber dissipated wave energy on the other side of the channel. The model was designed and manufactured based on the standard prototype of the National Renewable Energy Laboratory (NREL) 5 MW offshore wind turbine. In the first half of the study, the motion and structural responses for operational wave conditions of the North Sea near Scotland were considered to investigate the performance of a traditional TLP floating wind turbine compared with that of a newly designed TLP with added mooring lines. The new mooring lines were attached with the objective of increasing the horizontal stiffness of the system and thereby reducing the dominant motion of the TLP platform (i.e., the surge motion). The results of surge translational motions were obtained both in the frequency domain, using the response amplitude operator (RAO), and in the time domain, using the omega arithmetic method for the relative velocity. The results obtained show that our suggested concept improves the stability of the platform and reduces the overall motion of the system in all degrees-of-freedom. Moreover, the modified design was verified to enable operation in extreme wave conditions based on real data for a 100-year return period of the Northern Sea of California. The loads applied by the waves on the structure were also measured experimentally using modified Morison equation—the formula most frequently used to estimate wave-induced forces on offshore floating structures. The corresponding results obtained show that the wave loads applied on the new design TLP had less amplitude than the initial model and confirmed the significant contribution of the mooring lines in improving the performance of the system.


Author(s):  
Yu Zhang ◽  
Paul D. Sclavounos

Abstract The development is presented of an analytical model for the prediction of the stochastic nonlinear wave loads on the support structure of bottom mounted and floating offshore wind turbines. Explicit expressions are derived for the time-domain and frequency-domain nonlinear exciting forces in a seastate with significant wave height comparable to the diameter of the support structure based on the fluid impulse theory. The higher order moments of the nonlinear load are evaluated from simulated force records and the derivation of analytical expressions for the nonlinear load statistics for their efficient use in design is addressed.


Author(s):  
Luigia Riefolo ◽  
Fernando del Jesus ◽  
Raúl Guanche García ◽  
Giuseppe Roberto Tomasicchio ◽  
Daniela Pantusa

The design methodology for mooring systems for a spar buoy wind turbine considers the influence of extreme events and wind/wave misalignments occurring in its lifetime. Therefore, the variety of wind and wave directions affects over the seakeeping and as a result the evaluation of the maxima loads acting on the spar-buoy wind turbine. In the present paper, the importance of wind/wave misalignments on the dynamic response of spar-type floating wind turbine [1] is investigated. Based on standards, International Electrotechnical Commission IEC and Det Norske Veritas DNV the design of position moorings should be carried out under extreme wind/wave loads, taking into account their misalignments with respect to the structure. In particular, DNV standard, in ‘Position mooring’ recommendations, specifies in the load cases definition, if site specific data is not available, to consider non-collinear environment to have wave towards the unit’s bow (0°) and wind 30° relative to the waves. In IEC standards, the misalignment of the wind and wave directions shall be considered to design offshore wind turbines and calculate the loads acting on the support structure. Ultimate Limit State (ULS) analyses of the OC3-Hywind spar buoy wind turbine are conducted through FAST code, a certified nonlinear aero-hydro-servo-elastic simulation tool by the National Renewable Energy Laboratory’s (NREL’s). This software was developed for use in the International Energy Agency (IEA) Offshore Code Comparison Collaborative (OC3) project, and supports NREL’s offshore 5-MW baseline turbine. In order to assess the effects of misaligned wind and wave, different wind directions are chosen, maintaining the wave loads perpendicular to the structure. Stochastic, full-fields, turbulence simulator Turbsim is used to simulate the 1-h turbulent wind field. The scope of the work is to investigate the effects of wind/wave misalignments on the station-keeping system of spar buoy wind turbine. Results are presented in terms of global maxima determined through mean up-crossing with moving average, which, then, are modelled by a Weibull distribution. Finally, extreme values are estimated depending on global maxima and fitted on Gumbel distribution. The Most Probable Maximum value of mooring line tensions is found to be influenced by the wind/wave misalignments. The present paper is organized as follows. Section ‘Introduction’, based on a literature study, gives useful information on the previous studies conducted on the wind/wave misalignments effects of floating offshore wind turbines. Section ‘Methodology’ describes the applied methodology and presents the spar buoy wind turbine, the used numerical model and the selected environmental conditions. Results and the corresponding discussion are given in Section ‘Results and discussion’ for each load case corresponding to the codirectional and misaligned wind and wave loads. Results are presented and discussed in time and frequency domains. Finally, in Section ‘Conclusion’ some conclusions are drawn.


Author(s):  
Jacob C. Ward ◽  
Matthew J. Fowler ◽  
Anthony M. Viselli ◽  
Andrew J. Goupee ◽  
Habib J. Dagher

A variable-scale model wind turbine has been developed by the Advanced Structures and Composites Center for testing scale-model floating offshore wind turbines. This model has been designed to be lightweight with a robust individual blade pitch mechanism. Froude number similitude is used to develop scaling relationships, while specialized blades have been designed to produce representative aerodynamic forces despite mismatched Reynolds numbers. Numerical simulations show that the model turbine is able to match the scaled aerodynamic thrust of commercial wind turbines by altering blade pitch and maintaining Froude number and tip-speed-ratio similitude. This turbine has the capability to accurately simulate commercial turbines of varying sizes in complex loading conditions with the additional capability to implement and test new control algorithms.


Author(s):  
K. Iijima ◽  
M. Kawai ◽  
Y. Nihei ◽  
M. Murai ◽  
T. Ikoma

A new design concept of a semi-submersible type floating offshore wind turbine (FOWT) moored by a single-point mooring is proposed. The FOWT model adopting 5MW class wind turbine is designed. The motion characteristics of the FOWT are evaluated by a series of tank tests. To this end, a scaled model with a scale ratio 1/100 is fabricated. The scaled mode tests are performed under winds, waves, and combined winds and waves to check its fundamental feasibility. It is observed that the motion characteristics under wind and waves are acceptable in general, and the combination of the single point mooring and the down-wind type rotor is effective in terms of weathervane. It is also shown that the difference between the two transfer functions to wave loads, one with and the other without wind loads, is small except pitch response at low frequencies.


2013 ◽  
Vol 569-570 ◽  
pp. 636-643 ◽  
Author(s):  
Van Nguyen Dinh ◽  
Biswajit Basu

In this paper an overview about floating offshore wind turbines (FOWT) including operating conditions, property and applicability of the barge, tension-leg, and spar floating platforms is described. The spar-floating offshore wind turbines (S-FOWT) have advantages in deepwater and their preliminary design, numerical modeling tools and integrated modeling are reviewed. Important conclusions about the nacelle and blade motions, tower response, effects of wind and wave loads, overall vibration and power production of the S-FOWT are summarized. Computationally-simplified models with acceptable accuracy are necessary for feasibility and pre-engineering studies of the FOWT. The design needs modeling and analysis of aero-hydro-servo dynamic coupling of the entire FOWT. This paper also familiarizes authors with FOWT and its configurations and modeling approaches.


Sign in / Sign up

Export Citation Format

Share Document