Modeling, Parameter Identification and Thruster-Assisted Position Mooring of C/S Inocean Cat I Drillship

Author(s):  
Jon Bjørnø ◽  
Hans-Martin Heyn ◽  
Roger Skjetne ◽  
Andreas R. Dahl ◽  
Preben Frederich

A thruster-assisted position mooring (TAPM) system includes different control functions for stationkeeping and motion damping for a moored offshore vessel with assist from thrusters. It consists of a conventional mooring system and a dynamic positioning (DP) system. The thrusters are used to provide damping and some restoring to the vessel motion and compensate if line breakage occurs. The mooring system absorbs the main loads to keep the vessel in place. This paper presents a complete modeling, parameter identification, and control design for a 1:90 scaled TAPM model vessel. The numerical values for the different model parameters are identified from towing tests. State-of-the-art TAPM control algorithms have been tested on the vessel in the Marine Control Laboratory (MC Lab), to see the behavior resulting from the different control algorithms. The presented experiments focus on the setpoint chasing algorithm, where the position setpoint slowly moves to the equilibrium position where the environmental loads are balanced by the mooring loads. This avoids conflicts between the mooring system and the control actions. If the environmental loads are too large so that the setpoint exceeds a user-defined safety radius, the setpoint is set to this radius and thruster forces grow to support the mooring system in counteracting the environmental loads to avoid line breakage. The experiments show that the vessel and setpoint chasing control algorithm behaves as expected, minimizing thruster usage and maximizing utilization of mooring system.

Author(s):  
Young-Tai Choi ◽  
Norman M. Wereley ◽  
Gregory J. Hiemenz

Novel semi-active vibration controllers are developed in this study for magnetorheological (MR) fluid-based vibration control systems, including: (1) a band-pass frequency shaped semi-active control algorithm, (2) a narrow-band frequency shaped semi-active control algorithm. These semi-active vibration control algorithms designed without resorting to the implementation of an active vibration control algorithms upon which is superposed the energy dissipation constraint. These new Frequency Shaped Semi-active Control (FSSC) algorithms require neither an accurate damper (or actuator) model, nor system identification of damper model parameters for determining control current input. In the design procedure for the FSSC algorithms, the semi-active MR damper is not treated as an active force producing actuator, but rather is treated in the design process as a semi-active dissipative device. The control signal from the FSSC algorithms is a control current, and not a control force as is typically done for active controllers. In this study, two FSSC algorithms are formulated and performance of each is assessed via simulation. Performance of the FSSC vibration controllers is evaluated using a single-degree-of-freedom (DOF) MR fluid-based engine mount system. To better understand the control characteristics and advantages of the two FSSC algorithms, the vibration mitigation performance of a semi-active skyhook control algorithm, which is the classical semi-active controller used in base excitation problems, is compared to the two FSSC algorithms.


2017 ◽  
Vol 37 (2) ◽  
pp. 186-199 ◽  
Author(s):  
Zhiqiang Yu ◽  
Qing Shi ◽  
Huaping Wang ◽  
Ning Yu ◽  
Qiang Huang ◽  
...  

Purpose The purpose of this paper is to present state-of-the-art approaches for precise operation of a robotic manipulator on a macro- to micro/nanoscale. Design/methodology/approach This paper first briefly discussed fundamental issues associated with precise operation of a robotic manipulator on a macro- to micro/nanoscale. Second, this paper described and compared the characteristics of basic components (i.e. mechanical parts, actuators, sensors and control algorithm) of the robotic manipulator. Specifically, commonly used mechanisms of the manipulator were classified and analyzed. In addition, intuitive meaning and applications of its actuator explained and compared in details. Moreover, related research studies on general control algorithm and visual control that are used in a robotic manipulator to achieve precise operation have also been discussed. Findings Remarkable achievements in dexterous mechanical design, excellent actuators, accurate perception, optimized control algorithms, etc., have been made in precise operations of a robotic manipulator. Precise operation is critical for dealing with objects which need to be manufactured, modified and assembled. The operational accuracy is directly affected by the performance of mechanical design, actuators, sensors and control algorithms. Therefore, this paper provides a categorization showing the fundamental concepts and applications of these characteristics. Originality/value This paper presents a categorization of the mechanical design, actuators, sensors and control algorithms of robotic manipulators in the macro- to micro/nanofield for precise operation.


Processes ◽  
2021 ◽  
Vol 9 (2) ◽  
pp. 282
Author(s):  
Jarosław Knaga ◽  
Stanisław Lis ◽  
Sławomir Kurpaska ◽  
Piotr Łyszczarz ◽  
Marcin Tomasik

In this work, the possibility of limiting energy consumption in the manufacturing process of bioethanol to obtain biofuel was analysed. For this purpose, a control algorithm has been optimised while retaining the good quality of the control signals. New in this study is the correlation of the control algorithm not only with the signal’s quality, but also with the energy consumption in such an energy-intensive process as rectification. The rectification process in a periodic production system has been researched. The process was modelled on a test station with the distillation mixture capacity of 25 dm3. For the optimization, the following control algorithms have been applied: relay, PID and PID after modification to I-PD. The simulation was carried out on a transfer function model of the plant that has been verified on a real object, a rectification column. The simulations of energy consumption and control signal’s quality have been carried out in the Matlab®-Simulink environment after implementing the model of the research subject and control algorithms. In the simulation process, an interference signal with an amplitude of 3% and frequency of 2 mHz was used. The executed analyses of the control signal quality and the influence of the control algorithm on the energy consumption has shown some essential mutual relationships. The lowest energy consumption in the rectification process can be achieved using the I-PD controller—however, the signal quality deteriorates. The energy savings are slightly lower while using the PID controller, but the control signal quality improves significantly. From a practical point of view, in the considered problem the best control solution is the classic PID controller—the obtained energy effect was only slightly lower while retaining the good quality of the control signals.


2013 ◽  
Vol 198 ◽  
pp. 507-512
Author(s):  
Florian Quantmeyer ◽  
Xiao Bo Liu-Henke

Political pressure on the automotive industry will lead in future to an increasing electrification of the powertrain. The new components require the development of new vehicle control systems and control functions. Due to the high complexity of such systems the mechatronical development process including Model in the Loop (MIL), Software in the Loop (SIL) and Hardware in the Loop (HIL) simulation has been established. In this paper, a HiL test rig is presented, which has high flexibility and supports the model based development of control systems for battery electric vehicles at all levels.


Author(s):  
Kwangjin Han ◽  
Kunsoo Huh ◽  
Jaehyung Chun ◽  
Myoungjune Kim ◽  
Joogon Kim

Brake-by-wire (BBW) systems can be used for enhanced safety braking of intelligent vehicles and also for environmentally friendly vehicles such as hybrid electric vehicles (HEVs) and electric vehicles (EVs). The electronic wedge brake (EWB) is one of the brake-by-wire systems with a self-energizing effect. The EWB is faster than the conventional hydraulic brake and requires only about one-tenth the power to operate. However, the EWB can be unstable unless controlled properly since the self-energizing effect can unintentionally lock up the vehicle’s wheels. In addition, the self-energizing effect is very sensitive to environment and parametric variances, e.g. friction, temperature, speed, load, etc. In this paper, two control algorithms for the EWB are introduced and compared each other in performance. The performance of the proposed control algorithms is verified in simulations.


Author(s):  
Ahmed Okasha ◽  
Scott A. Bortoff

Abstract In this paper we derive a dynamic model of the delta robot and two formulations of the manipulator Jacobian that comprise a system of singularity-free, index-one differential algebraic equations that is well-suited for model-based control design and computer simulation. One of the Jacobians is intended for time-domain simulation, while the other is for use in discrete-time control algorithms. The model is well-posed and numerically well-conditioned throughout the workspace, including at kinematic singularities. We use the model to derive an approximate feedback linearizing control algorithm that can be used for both trajectory tracking and impedance control, enabling some assembly tasks involving contact and collisions. The model and control algorithms are realized in the open-source Modelica language, and a Modelica-based software architecture is described that allows for a seamless development process from mathematical derivation of control algorithms, to desktop simulation, and finally to laboratory-scale experimental testing without the need to recode any aspect of the control algorithm. Simulation and experimental results are provided.


Robotics ◽  
2018 ◽  
Vol 7 (4) ◽  
pp. 76
Author(s):  
Marco Costanzo ◽  
Giuseppe De Maria ◽  
Gaetano Lettera ◽  
Ciro Natale ◽  
Salvatore Pirozzi

This work proposes the application of several smart strategies for object manipulation tasks. A real-time flexible motion planning method was developed to be adapted to typical in-store logistics scenarios. The solution combines and optimizes some state-of-the-art techniques to solve object recognition and localization problems with a new hybrid pipeline. The algorithm guarantees good robustness and accuracy for object detection through depth images. A standard planner plans collision-free trajectories throughout the whole task while a proposed reactive motion control is active. Distributed proximity sensors were adopted to locally modify the planned trajectory when unexpected or misplaced obstacles intervene in the scene. To implement a robust grasping phase, a novel slipping control algorithm was used. It dynamically computes the grasp force by adapting it to the actual object physical properties so as to prevent slipping. Experimental results carried out in a typical supermarket scenario demonstrate the effectiveness of the presented methods.


Author(s):  
Н.Р. Антропов ◽  
Е.Д. Агафонов

В работе рассматривается задача адаптивной идентификации и управления нелинейными динамическими объектами. Предлагается новый рекуррентный ядерный алгоритм дуального управления с использованием идентификатора. Приводятся результаты численного исследования, подтверждающие эффективность предложенного алгоритма. The paper considers adaptive identification and control problem of nonlinear dynamic processes. For solution of the problem new recursive identification and control algorithms are proposed. The paper presents the results of a numerical study illustrating the performance of the proposed recursive identification and control algorithms.


1977 ◽  
Vol 99 (3) ◽  
pp. 209-211 ◽  
Author(s):  
D. M. Auslander ◽  
M. Tomizuka ◽  
Y. Takahashi

A self-tuning method is described for a simple discrete-time control algorithm presented in a previous paper. With self-tuning, the algorithm is a candidate for a new class of single-loop controllers that would be considerably more convenient to use than the present analog PID controllers. Experimental results are presented indicating the applicability of the tuning and control algorithms to typical, nonideal processes.


Author(s):  
Áron Fehér ◽  
Dénes Nimród Kutasi

Abstract In this work, an explicit Model Predictive Control algorithm is devised and compared to classical control algorithms applied to a series resonant DC/DC converter circuit. In the first part, a model of the converter as a hybrid system is created and studied. In the second part, the predictive algorithm is applied and tested on the model. Finally, the designed control algorithm is compared to classical PI and sliding mode controllers.


Sign in / Sign up

Export Citation Format

Share Document