Numerical Study on Scale Effect of KCS

2019 ◽  
Author(s):  
Yujie Zhou ◽  
Liwei Liu ◽  
Xiao Cai ◽  
Dakui Feng ◽  
Bin Guo

Abstract The key objective of this paper is to perform a fully nonlinear unsteady RANS simulation to predict the self-propulsion performance of KCS at two different scales. This simulations are performed at design speeds in calm water, using inhouse computational fluid dynamics (CFD) to solve RANS equation coupled with two degrees of freedom (2DOF) solid body motion equations including heave and pitch. The SST k-ω turbulence equation is discretized by finite difference method. The velocity pressure coupling is solved by PISO algorithm. Computations have used structured grid with overset technology. The single-phase level-set method is used to capture the free surface. The simulations of self-propulsion are based on the body-force method. The PID control method is applied to match the speed of KCS by changing the propeller rotation speed automatically. In this paper, the self-propulsion factors of KCS at two scales are predicted and the results from inhouse CFD code are compared with the EFD date, and then the reasons for the scale effect have been discussed.

2020 ◽  
pp. 1-16 ◽  
Author(s):  
Cihad Delen ◽  
Ugur Can ◽  
Sakir Bal

Resistance and self-propulsion characteristics of a naval ship at full scale have been investigated by using Telfer’s GEOmetrically SIMilar (GEOSIM) method based on the computational fluid dynamics (CFD) approach. For this purpose, first, the resistance forces of the Office of Naval Research Tumblehome (ONRT) hull have been computed at different three model scales by using the overset mesh technique. The full-scale resistance and nominal wake fraction of the ONRT hull have been estimated by using Telfer’s GEOSIM method. Resistance and nominal wake fraction have then been compared with those of CFD at full scale. Later, the self-propulsion characteristics of the ONRT hull have been examined using Telfer’s GEOSIM method based on the CFD approach. Self-propulsion factors at the full-scale hull have been predicted by using the SST k-ω turbulence model to involve 2-degrees of freedom ship motions (heave and pitch). Rotational motion of the propeller has also been simulated by using the rigid body motion technique. The results calculated by Telfer’s GEOSIM method and the 1978 International Towing Tank Conference (ITTC) extrapolation technique have been compared with each other and discussed with those of the CFD approach at full scale. It was found that the full-scale results (both resistance and self-propulsion factors) predicted by Telfer’s GEOSIM method are closer to those of the CFD approach than those of the 1978 ITTC technique. It can be noted that Telfer’s GEOSIM method is fast, robust, and reliable and can be used as an alternative to the 1978 ITTC method for predicting the self-propulsion performance of a full-scale ship.


2018 ◽  
Author(s):  
Heng Zhang ◽  
Hang Zhang ◽  
Xuanshu Chen ◽  
Hao Liu ◽  
Xianzhou Wang

Making CFD with the capability of predicting ship scale design performance, rather than relying on scale model tests will help reduce design costs and provide a greater opportunity to develop more energy efficient ship designs. The key objective of this paper is to perform a fully nonlinear unsteady RANS simulation to predict the ship motions and resistance of a full scale DTMB 5415 ship model. The analyses are performed at design speeds, at a certain Fr number, using in-house computational fluid dynamics (CFD) to solve RANS equation coupled with six degrees of freedom (6DOF) solid body motion equations. RANS equations are solved by finite difference method and PISO arithmetic. Computations have been made using structured grid with overset technology. Simulation results shown that the total resistance coefficient in calm water at service speed is predicted by 2.36% error compared to the related towing tank results. The ship resistance for different scale demonstrated that the current in-house CFD model could predict the resistance in a reasonable range of the EFD data. The comparison of flow field for wave pattern for different scale model were analyzed and discussed.


Author(s):  
Ahmed A. Shabana ◽  
Martin B. Hamper ◽  
James J. O’Shea

In vehicle system dynamics, the effect of the gyroscopic moments can be significant during curve negotiations. The absolute angular velocity of the body can be expressed as the sum of two vectors; one vector is due to the curvature of the curve, while the second vector is due to the rate of changes of the angles that define the orientation of the body with respect to a coordinate system that follows the body motion. In this paper, the configuration of the body in the global coordinate system is defined using the trajectory coordinates in order to examine the effect of the gyroscopic moments in the case of curve negotiations. These coordinates consist of arc length, two relative translations and three relative angles. The relative translations and relative angles are defined with respect to a trajectory coordinate system that follows the motion of the body on the curve. It is shown that when the yaw and roll angles relative to the trajectory coordinate system are constrained and the motion is predominantly rolling, the effect of the gyroscopic moment on the motion becomes negligible, and in the case of pure rolling and zero yaw and roll angles, the generalized gyroscopic moment associated with the system degrees of freedom becomes identically zero. The analysis presented in this investigation sheds light on the danger of using derailment criteria that are not obtained using laws of motion, and therefore, such criteria should not be used in judging the stability of railroad vehicle systems. Furthermore, The analysis presented in this paper shows that the roll moment which can have a significant effect on the wheel/rail contact forces depends on the forward velocity in the case of curve negotiations. For this reason, roller rigs that do not allow for the wheelset forward velocity cannot capture these moment components, and therefore, cannot be used in the analysis of curve negotiations. A model of a suspended railroad wheelset is used in this investigation to study the gyroscopic effect during curve negotiations.


2019 ◽  
Author(s):  
Xueshen Xie ◽  
Yuxiang Wan ◽  
Qing Wang ◽  
Hao Liu ◽  
Dakui Feng

Abstract A numerical simulation of the hydrodynamic interaction and attitude of a ship and two ships of different sizes navigating in parallel in waves were carried out in this paper. The study of the two ships navigating in parallel is of great significance in marine replenishment. This paper used in house computational fluid dynamics (CFD) code to solve unsteady RANS equation coupled with six degrees of freedom (6DOF) solid body motion equations. URANS equations are solved by finite difference method and PISO algorithm. Structured grid with overset technology have been used to make computations. Turbulence models used the Shear Stress Transport (SST) k-ω model. The method used for free surface simulation is single phase level set. In this paper, two DTMB 5415 with different scales are selected for simulation analysis. This paper analyzed the impact of the big ship on the small ship when the two ships were navigating in parallel. This paper also analyzed the relationship between interaction and velocity between hulls, which has certain guiding significance for the ship’s encounter on the sea.


2019 ◽  
Author(s):  
Qing Wang ◽  
Xuanshu Chen ◽  
Liwei Liu ◽  
Xianzhou Wang ◽  
MingJing Liu

Abstract The dangerous situation caused by the breakage of the ship will pose a serious threat to crew and ship safety. If the ship’s liquid cargo or fuel leaks, it will cause serious damage to the marine environment. If damage occurs accompanied by roll and other motions, it may cause more dangerous consequences. It is an important issue to study the damaged ship in time-domain. In this paper, the motions of the damaged DTMB 5512 in calm water and regular beam waves are studied numerically. The ship motions are analyzed through CFD methods, which are acknowledged as a reliable approach to simulate and analyze these complex physical phenomena. An in-house CFD (computational fluid dynamics) code HUST-Ship (Hydrodynamic Unsteady Simulation Technology for Ship) is used for solving RANS equations coupled with six degrees of freedom (6DOF) solid body motion equations. RANS equations discretized by finite difference method and solved by PISO algorithm. Level set was used for free surface simulation. The dynamic behavior of model was observed in both intact and damaged condition. The heave, roll and pitch amplitudes of the damaged ship were studied in calm water and beam wave of three wavelengths.


2012 ◽  
Vol 542-543 ◽  
pp. 675-678
Author(s):  
Suo Jun Hou ◽  
Wen Ku Shi ◽  
Mao Yang ◽  
Hai Sheng Li

A MRF fluid engine mount with controlled annular access, inertia track and decoupler is designed. Through the experiment it can be seen that the low frequency performance of the mount is greatly improved. Then the dynamic low frequency performance of the mount using the fuzzy PID control method of two degrees-of-freedom system in different engine speed is simulated and the results show that the fuzzy PID control method is effective to reduce the body acceleration.


2021 ◽  
Author(s):  
Kenshiro Takahashi ◽  
Takayuki Mori

Abstract This study is based on previous works in a series of numerical studies on submarine hydrodynamics, which involved developing a computational fluid dynamics method to estimate the self-propulsive performance of underwater vehicles. Herein, the Defense Advanced Research Projects Agency SUBOFF submarine model was adopted as a benchmark. The computational modeling applied was based on the Reynolds-averaged Navier-Stokes turbulence model. A body-force propeller method was adopted to model the propulsion. The self-propulsive performance was verified via mesh refinement and validated by comparing the computational solutions with the results obtained from the experiments. The effect of the Reynolds number on the self-propulsive performance was investigated by varying the positions of the stern planes, while the free surface effect was determined by varying the Froude number (Fr) via the volume of fluid method. The computed Taylor wake fraction (w) and hull efficiency (ηH) depended on the Reynolds number as it decreased monotonically. The w and thrust deduction fraction (t) for the model of aft-fitted stern planes were approximately 3–7% and 8–10% higher than those of the baseline and fore-fitted stern planes, respectively. The differences in ηH between the models were insignificant. Regarding the free surface effects, the computations of w, t, and ηH generally decreased with Fr, thus exhibiting several humps and hollows. The computed upward suction force and pitching moment varied from negative to positive and vice versa, depending on Fr.


2005 ◽  
Vol 11 (11) ◽  
pp. 1357-1374 ◽  
Author(s):  
N. Yagiz ◽  
L. E. Sakman

A seven-degrees-of-freedom full vehicle model is used to design a robust controller and to investigate the performance of active suspensions without losing the suspension working space. Zero reference for vehicle body displacement finishes suspension working distance. Thus, a new approach is suggested in this paper. Force actuators are placed parallel to the suspensions and non-chattering sliding mode control is applied. Since any change in vehicle parameters because of different load or road conditions adversely affects the performance of the ordinary control methods, a robust control method is preferred. To obtain the desired improvement in ride comfort, we aim to decrease the magnitudes of the body vibrations and their accelerations. We present body bounce, pitch and roll motions of the vehicle with the conventional approach and the proposed approach without suspension gap loss, both in the time domain in the case of traveling over a step road profile and in the frequency domain. The results of both approaches are compared. The solution to the suspension gap loss problem has also been presented on periodic road surfaces. At the end of the paper, we discuss the improvement in the performance of the new controller with its robust behavior and the advantage of the new approach.


2015 ◽  
Vol 72 (9) ◽  
pp. 3685-3698 ◽  
Author(s):  
Kai-Yuan Cheng ◽  
Pao K. Wang ◽  
Tempei Hashino

Abstract The fall attitudes and the flow fields of falling hexagonal ice plates are studied by numerically solving the transient incompressible Navier–Stokes equation for flow past ice plates and the body dynamics equations representing the 6-degrees-of-freedom motion that determine the position and orientation of the ice plates in response to the hydrodynamic force of the flow fields. The ice plates investigated are from 1 to 10 mm in diameter, and the corresponding Reynolds number ranges from 46 to 974. The results indicate that the 1-mm plate generates a steady flow field and exhibits a steady motion, whereas the rest of the ice plates generate unsteady flow fields and exhibit unsteady motions, including horizontal translation, rotation, and axial oscillation. The horizontal translation is primarily determined by the inclination due to oscillation. The pressure distributions around the falling plates are examined and discussed in association with the oscillation. The vortex structure in the wake of the plate is examined. Empirical formulas for fall speed, oscillation frequency, and drag coefficient are given. Potential impacts of the fall attitudes and flow characteristics on the microphysics of ice plates are discussed.


Author(s):  
Shokoofeh Abbaszadeh ◽  
Roberto Leidhold ◽  
Stefan Hoerner

AbstractFish mortality assessments for turbine passages are currently performed by live-animal testing with up to a hundred thousand fish per year in Germany. A propelled sensor device could act as a fish surrogate. In this context, the study presented here investigates the state of the art via a thorough literature review on propulsion systems for aquatic robots. An evaluation of propulsion performance, weight, size and complexity of the motion achievable allows for the selection of an optimal concept for such a fish mimicking device carrying the sensors. In the second step, the design of a bioinspired soft robotic fish driven by an unconventional drive system is described. It is based on piezoceramic actuators, which allow for motion with five degrees of freedom (DOF) and the creation of complex bio-mimicking body motions. A kinematic model for the motion’s characteristics is developed, to achieve accurate position feedback with the use of strain gauges. Optical measurements validate the complex deformation of the body and deliver the basis for the calibration of the kinematic model. Finally, it can be shown, that the calibrated model presented allows the tracking of the deformation of the entire body with an accuracy of 0.1 mm.


Sign in / Sign up

Export Citation Format

Share Document