A Numerical Investigation of Steep Irregular Wave Properties With a Mixed-Eulerian Lagrangian HOS Method

Author(s):  
Sébastien Fouques ◽  
Csaba Pákozdi

Abstract The design of structures at sea requires knowledge on how large and steep waves can be. Although extreme waves are very rare, their consequences in terms of structural loads, such as wave impact or ringing, are critical. However, modelling the physical properties of steep waves along with their probability of occurrence in given sea states has remained a challenge. On the one hand, standard linear and weakly nonlinear wave theories are computationally efficient, but since they assume that the steepness parameter is small, they are unable to capture extreme waves. On the other hand, recent simulation methods based on CFD or fully nonlinear potential solvers are able to capture the physics of steep waves up to the onset on breaking, but their large computational cost makes it difficult to investigate rare events. Between these two extremes, the High-Order Spectral (HOS) method, which solves surface equations, is both efficient and able to capture highly nonlinear effects. It may then represent a good compromise for long simulations of steep waves. Unfortunately, it is based on a perturbation expansion where the small parameter is the wave steepness, and consequently, simulations tend to become unstable when steep wave events occur. In this work, we investigate the properties of irregular waves simulated with a modified HOS method, in which the sea surface is described with a Lagrangian representation, i.e. by computing the position and the velocity potential of individual surface particles. By doing so, nonlinear properties of the surface elevation are simply captured by the modulation of the horizontal and vertical particle motion. The same steep wave is then described more linearly with a Lagrangian representation, which reduces the instabilities of the HOS method. The paper focuses on bi-chromatic waves and irregular waves simulated from a JONSWAP spectrum. We compare simulations performed with the standard HOS and the modified Lagrangian methods for various HOS-orders.

Author(s):  
Xiufeng Liang ◽  
Jianmin Yang ◽  
Longfei Xiao ◽  
Xin Li ◽  
Jun Li

The importance of understanding air gap response and potential deck impact is well-known in the design stage of semi-submersible platform. The highly non-linear nature of wave elevation around large structures in steep waves makes it difficult to accurately predict wave field under the deck and wave run up along the columns. Present engineering tools for the prediction of air gap response generally based on simplified models. Even the models accounting for nonlinear wave diffraction is not free of uncertainties. A method adopted here couples a Navier-Stokes solver, VOF technique capturing violent free surface and DNV/Seasam predicting motions of moored semi-submersible platform. Air gap response at different locations of the hull was evaluated in predetermined irregular wave train. Wave run up was also measured by wave probes near the columns. Load cells were mounted under the deck of the platform to trace potential deck impact. The predetermined irregular wave train was simulated in a numerical wave tank and verified against physical tank results. Analysis of the air gap response, wave run up and impact loads on the semi-submersible platform were conducted.


Author(s):  
Arne Nestega˚rd ◽  
Arve Johan Kalleklev ◽  
Kjell Hagatun ◽  
Yu Lin Wu ◽  
Sverre Haver ◽  
...  

The Kristin platform is a catenary moored semi-submersible production vessel (SSPV) intended for production of gas at the Kristin field at Haltenbanken. Kristin has 24 riser guide tubes for tie in of flexible risers, umbilicals and electric cables to the riser balcony. The riser guide tubes (RGT) provide the necessary guiding, support and protection for risers and cables. The guide tubes run vertically from the deck and through the extended east pontoon. The guide tubes are welded to the pontoon and horizontally supported at the underside of the balcony deck. During model tests of the Kristin platform performed in the Ocean Basin laboratory at Marintek, high frequency in-line vibrations of the RGTs were observed during passage of steep waves. The resonance period for the individual RGTs is 0.3 sec. To mitigate the vibration problem, a vibration suppression arrangement of stiff rods was introduced between the guide tubes. Model tests were performed with respect to extreme- and fatigue loads in regular and irregular waves, with and without the suppression arrangement. The model included the floating framework representing the hull and the 24 RGTs with correct diameter and resonance period. The model was suspended in a horizontal mooring system, giving resonance periods in surge and sway close to the prototype platform. A load-response model for the interaction between large steep waves and vertical flexible cylinders has been developed. A slender body load model derived from Morison’s equation is shown to be able to excite the resonant vibrations. The dominant part of the loading comes from the rapid change of added mass momentum, giving rise to an additional slamming term in the load formulation. The structural response is calculated from a recognized non-linear slender body response program. Numerical simulations have been carried out and compared with model tests for both regular and irregular waves. The numerical predictions confirm the effect observed in the model tests; i.e. connecting the tubes generally leads to a reduction of the high frequency response amplitudes.


Author(s):  
Thomas B. Johannessen

Offshore structures such as the TLP or the GBS have natural frequencies which are much higher than the frequencies of the incident waves in the survival conditions. Nevertheless, many offshore structures experience significant resonant response of modes with periods in the range of 2s to 5s, particularly in steep waves. In particular the ringing response of offshore structures characterised by sudden, large and isolated resonant response packets, has been a concern for many years. The loads which give rise to these events are difficult to describe both because they are small in magnitude relative to the load level close to the wave spectral peak and also because they are nonlinear in nature. In the present paper, available theoretical methods for high frequency loading is employed for irregular waves and compared with model tests. The methods which are used in the present are first and second order diffraction methods as well as a third order loading model for slender cylinders applied to irregular waves with continuous wave spectra. The results are compared with measurements of tether response and overturning moments on a TLP and a GBS respectively. Provided that the incident waves are treated carefully and care is taken in treating the high frequency tail of the incident wave, it is found that methods which are presently available give a good representation of the resonant response for the GBS structure. The GBS structure has a relatively low natural frequency and a mode shape which is excited easily by horizontal loading in the surface zone. In contrast, weakly nonlinear theory does not capture the high frequency loading on a TLP which has resonant frequencies at more than five times the spectral peak in the survival seastates. For this case it is found that wave impact with both the columns and the deck gives significant contributions to the resonant tether response. This is the case even if no significant horizontal deck impact is observed and highlights the need for a reliable deck impact load model.


2021 ◽  
Vol 9 (6) ◽  
pp. 593
Author(s):  
Matthew Allmark ◽  
Rodrigo Martinez ◽  
Stephanie Ordonez-Sanchez ◽  
Catherine Lloyd ◽  
Tim O’Doherty ◽  
...  

Tidal devices are likely to faced with shear flows and subjected to various wave climates. The paper presents an experimental study of the combined impacts of shear profile and irregular waves on the loading of a 1/20th scale device operating at peak power extraction. The experiments presented were conducted at various depths to facilitate analysis of the effects of the shear flow and wave impact on the device at various positions in the water column. The fluid field was measured at three different upstream positions and at three depths (top, middle and bottom of the rotor) for each experiment; in doing so, data from the device were captured three times. The fluid measurements were of a high quality and were analysed to present the structure flow upstream of the device, which contained velocity and turbulence profiles. The upstream measurement was utilised to understand the development of flow structures in the approach to the device, and the impact of the flow structures measured was confirmed via cross-covariance calculations. The long datasets gathered were used to produce full rotational probability density functions for the blade-root-bending moments for three blades. The spectral characteristics were also considered, and showed that rotor loading quantities are less reactive to smaller scale flow structures.


Author(s):  
Rafael Vergara Schiller ◽  
Csaba Pâkozdi ◽  
Carl Trygve Stansberg ◽  
Douglas Gustavo Takashi Yuba ◽  
Daniel Fonseca de Carvalho e Silva

This paper presents a series of numerical analyses performed with the potential theory-based Green Water engineer tool KINEMA3. KINEMA3 was designed to predict wave-induced impact loads on FPSOs in steep irregular waves, and for use in design load analysis. The purpose of the study presented herein is to validate KINEMA3 green water (deck overtopping) predictions in nonlinear irregular waves with results from model tests performed at the TPN (Tanque de Provas Numérico) laboratory at the University of São Paulo, Brazil. Comparisons are made for a selection of irregular wave cases, for two choices of anchoring conditions (free floating vessel and fixed vessel) and for three wave headings (180°, 225° and 270°: head, quartering and beam seas, respectively). KINEMA3 statistical green water predictions present a general good agreement with observations from the TPN model tests for all wave cases, headings and mooring conditions. Overall, observed trends for occurrence of green water and standard deviation/maximum of relative wave height are successfully reproduced by KINEMA3. In agreement with model test results, it is predicted that green water occurs more frequently for a free floating vessel and for beam seas. Additional comparisons between KINEMA3 predictions using different FPSO panel models (low-order and high-order models) present negligible differences with respect to green water estimates. The results presented herein demonstrate the robustness of the tool towards the prediction of green water for variable wave headings and sea states, and highlight the capability of KINEMA3 to be employed as an engineering-like tool for fast and multiple estimates of green water in early design studies. This work is a part of the research project “Green Water and Wave Impact on FPSO” carried out for and in cooperation with PETROBRAS.


2016 ◽  
Vol 2016 ◽  
pp. 1-17 ◽  
Author(s):  
Haoyun Tang ◽  
Huilong Ren ◽  
Hui Li ◽  
Qi Zhong

The irregular wave condition, especially the oblique irregular wave condition, is the actual circumstances when trimaran is sailing in sea. In order to identify the characteristic of the wave-induced hydroelastic vibration in irregular waves, as well as investigate the change of vibration in different oblique irregular wave conditions, trimaran model tests were conducted to measure vibrations, wave impact, and motion under different azimuth and wave height. The vibration on main hull, side hull, and cross-desk is measured and analyzed separately to observe the influence of irregular wave in different structural parts. The longitudinal vibration, transverse vibration, and torsion are also included in the model tests measurement to investigate the relationship between these vibration deformation components and parameters of the irregular waves. The wave-induced hydroelastic vibrations and whipping effect is extracted and analyzed to find influence of whipping and springing on the total vibration. Based on the analysis, the dangerous positions and the critical waves condition is introduced to ensure that the subsequent structural strength assessment is more reliable.


Author(s):  
Nagi Abdussamie ◽  
Roberto Ojeda ◽  
Giles Thomas ◽  
Walid Amin

This article describes a series of model tests conducted to examine extreme wave events associated with tropical cyclonic conditions and their impacts on an offshore deck structure. Extreme waves of a representative cyclonic sea state were examined in a towing tank within long-crested irregular wave trains. Experimental results presented include global forces and localised slamming pressures acting on a rigidly mounted box-shaped deck, which represents a simplified topside structure of a tension leg platform. The effect of static set-down on the still-water air gap was investigated by applying an equivalent reduction for the deck clearance. It was found that a small reduction of 20 mm (2.5 m full scale) in the original deck clearance can lead to a doubling of the magnitude of the horizontal force and the vertical upward-directed force components, as well as significantly increased slamming pressures in many locations on the deck underside.


Fluids ◽  
2019 ◽  
Vol 4 (2) ◽  
pp. 99 ◽  
Author(s):  
Jie Zhang ◽  
Michel Benoit ◽  
Olivier Kimmoun ◽  
Amin Chabchoub ◽  
Hung-Chu Hsu

The formation mechanism of extreme waves in the coastal areas is still an open contemporary problem in fluid mechanics and ocean engineering. Previous studies have shown that the transition of water depth from a deeper to a shallower zone increases the occurrence probability of large waves. Indeed, more efforts are required to improve the understanding of extreme wave statistics variations in such conditions. To achieve this goal, large scale experiments of unidirectional irregular waves propagating over a variable bottom profile considering different transition water depths were performed. The validation of two highly nonlinear numerical models was performed for one representative case. The collected data were examined and interpreted by using spectral or bispectral analysis as well as statistical analysis. The higher probability of occurrence of large waves was confirmed by the statistical distributions built from the measured free surface elevation time series as well as by the local maximum values of skewness and kurtosis around the end of the slope. Strong second-order nonlinear effects were highlighted as waves propagate into the shallower region. A significant amount of wave energy was transmitted to low-frequency modes. Based on the experimental data, we conclude that the formation of extreme waves is mainly related to the second-order effect, which is also responsible for the generation of long waves. It is shown that higher-order nonlinearities are negligible in these sets of experiments. Several existing models for wave height distributions were compared and analysed. It appears that the generalised Boccotti’s distribution can predict the exceedance of large wave heights with good confidence.


Author(s):  
Tung T. Vu ◽  
Ha Hoang Kha

In this research work, we investigate precoder designs to maximize the energy efficiency (EE) of secure multiple-input multiple-output (MIMO) systems in the presence of an eavesdropper. In general, the secure energy efficiency maximization (SEEM) problem is highly nonlinear and nonconvex and hard to be solved directly. To overcome this difficulty, we employ a branch-and-reduce-and-bound (BRB) approach to obtain the globally optimal solution. Since it is observed that the BRB algorithm suffers from highly computational cost, its globally optimal solution is importantly served as a benchmark for the performance evaluation of the suboptimal algorithms. Additionally, we also develop a low-complexity approach using the well-known zero-forcing (ZF) technique to cancel the wiretapped signal, making the design problem more amenable. Using the ZF based method, we transform the SEEM problem to a concave-convex fractional one which can be solved by applying the combination of the Dinkelbach and bisection search algorithm. Simulation results show that the ZF-based method can converge fast and obtain a sub-optimal EE performance which is closed to the optimal EE performance of the BRB method. The ZF based scheme also shows its advantages in terms of the energy efficiency in comparison with the conventional secrecy rate maximization precoder design.


Author(s):  
Wei Zhang ◽  
Saad Ahmed ◽  
Jonathan Hong ◽  
Zoubeida Ounaies ◽  
Mary Frecker

Different types of active materials have been used to actuate origami-inspired self-folding structures. To model the highly nonlinear deformation and material responses, as well as the coupled field equations and boundary conditions of such structures, high-fidelity models such as finite element (FE) models are needed but usually computationally expensive, which makes optimization intractable. In this paper, a computationally efficient two-stage optimization framework is developed as a systematic method for the multi-objective designs of such multifield self-folding structures where the deformations are concentrated in crease-like areas, active and passive materials are assumed to behave linearly, and low- and high-fidelity models of the structures can be developed. In Stage 1, low-fidelity models are used to determine the topology of the structure. At the end of Stage 1, a distance measure [Formula: see text] is applied as the metric to determine the best design, which then serves as the baseline design in Stage 2. In Stage 2, designs are further optimized from the baseline design with greatly reduced computing time compared to a full FEA-based topology optimization. The design framework is first described in a general formulation. To demonstrate its efficacy, this framework is implemented in two case studies, namely, a three-finger soft gripper actuated using a PVDF-based terpolymer, and a 3D multifield example actuated using both the terpolymer and a magneto-active elastomer, where the key steps are elaborated in detail, including the variable filter, metrics to select the best design, determination of design domains, and material conversion methods from low- to high-fidelity models. In this paper, analytical models and rigid body dynamic models are developed as the low-fidelity models for the terpolymer- and MAE-based actuations, respectively, and the FE model of the MAE-based actuation is generalized from previous work. Additional generalizable techniques to further reduce the computational cost are elaborated. As a result, designs with better overall performance than the baseline design were achieved at the end of Stage 2 with computing times of 15 days for the gripper and 9 days for the multifield example, which would rather be over 3 and 2 months for full FEA-based optimizations, respectively. Tradeoffs between the competing design objectives were achieved. In both case studies, the efficacy and computational efficiency of the two-stage optimization framework are successfully demonstrated.


Sign in / Sign up

Export Citation Format

Share Document