Statistical Model for Prediction of Plate-Specific Fracture Toughness Properties of ASTM A285 Steel

Author(s):  
K. H. Subramanian ◽  
B. J. Wiersma ◽  
A. J. Duncan ◽  
S. P. Harris

A materials test program was developed to measure mechanical properties of A285 carbon steel under conditions relevant to waste storage tanks at the Savannah River Site. Fracture toughness and tensile testing were performed on ASTM Type A285 steels that span tank plate compositions. Variables relevant to the material and load conditions for Type I and Type II tanks were defined and a statistical test matrix was designed for fracture toughness testing. The test matrix consisted of eight variables expected to influence mechanical properties. The independent variables were carbon content, manganese content, sulfur content, thickness, pearlite fraction, and grain size. The responses were the fracture toughness JIc, and a figure-of-merit at J3mm to allow for sub-critical ductile crack growth. A total of 85 J-R curves were compiled. The full data set was used to construct statistical models to predict fracture properties as a function of metallurgical properties and operating conditions. Eight independent models resulting from combinations of loading rate (quasi-static, dynamic) and orientation (T-L, L-T) were developed. The statistical significance of terms was determined for each of the models. Thickness and grain size were found to be of statistical significance in the models developed for the dynamic strain rate testing data. Compositional variables were found to be of statistical significance for the quasi-static loading rate fracture toughness data.

2016 ◽  
Vol 849 ◽  
pp. 549-556
Author(s):  
Pin Pin Hu ◽  
Qi Dong Gai ◽  
Qing Li ◽  
Xin Tang

The effect of Microcast-X fine grain casting on the microstructure and mechnical property K492M alloy at 760°C of was investigated. The results indicated that Microcast-X fine grain casting decreased grain size and dendrite space of γ′ phase and γ/γ′ eutectic. In addition, the element segregation decreased significantly compared to conventional casting technique. Also, the size and distribution of MC carbide were improved. By Microcast-X fine grain casting, the tensile strength increased from 934MPa of conventional casting alloy to 1089MPa and the elongation increased from 1.9% to 5.7%. In addition, the stress-rupture life increased from 28.8h of conventional casting alloy to 72.5h. And the fracture mechanism for the alloys by Microcast-X fine grain casting is trans-granular fracture toughness.


2021 ◽  
Author(s):  
Yuelong Wang ◽  
Xingyu Li ◽  
Haoyang Wu ◽  
Baorui Jia ◽  
Deyin Zhang ◽  
...  

Abstract Si3N4-based ceramic (Si3N4-5wt%Y2O3-3wt%MgO) was obtained from carbothermal-reduction-derived powder combined with gas pressure sintering. The phase, microstructure, thermal conductivity and mechanical properties of Si3N4 ceramics were comprehensively analyzed. Dense Si3N4 ceramic with uniform grain size was obtained after sintering at 1900°C for 7 h under a N2 pressure of 1.2 MPa. The secondary phase consisted of Y4Si2O7N2 and Y2Si3O3N4 was found to gather around triangular grain boundaries. The thermal conductivity, flexural strength, hardness and fracture toughness of the Si3N4 ceramics were 95.7 W·m-1·k-1, 715 MPa, 17.2 GPa and 7.2 MPa·m1/2, respectively. The results were compared with product derived from commercial powder, the improvement of thermal conductivity (~8.3%) and fracture toughness (~4.3%) demonstrating the superiority of Si3N4 ceramics prepared from carbothermal-reduction-derived powder.


2012 ◽  
pp. 209-261

Abstract This chapter provides information and data on the fatigue and fracture properties of steel, aluminum, and titanium alloys. It explains how microstructure, grain size, inclusions, and other factors affect the fracture toughness and fatigue life of these materials and the extent to which they can be optimized. It also discusses the effect of metalworking and heat treatment, the influence of loading and operating conditions, and factors such as corrosion damage that can accelerate crack growth rates.


2016 ◽  
Vol 5 (5) ◽  
pp. 16 ◽  
Author(s):  
Guolong Zhao

To evaluate a drug, statistical significance alone is insufficient and clinical significance is also necessary. This paper explains how to analyze clinical data with considering both statistical and clinical significance. The analysis is practiced by combining a confidence interval under null hypothesis with that under non-null hypothesis. The combination conveys one of the four possible results: (i) both significant, (ii) only significant in the former, (iii) only significant in the latter or (iv) neither significant. The four results constitute a quadripartite procedure. Corresponding tests are mentioned for describing Type I error rates and power. The empirical coverage is exhibited by Monte Carlo simulations. In superiority trials, the four results are interpreted as clinical superiority, statistical superiority, non-superiority and indeterminate respectively. The interpretation is opposite in inferiority trials. The combination poses a deflated Type I error rate, a decreased power and an increased sample size. The four results may helpful for a meticulous evaluation of drugs. Of these, non-superiority is another profile of equivalence and so it can also be used to interpret equivalence. This approach may prepare a convenience for interpreting discordant cases. Nevertheless, a larger data set is usually needed. An example is taken from a real trial in naturally acquired influenza.


Metals ◽  
2020 ◽  
Vol 10 (5) ◽  
pp. 643
Author(s):  
Chiara Soffritti ◽  
Annalisa Fortini ◽  
Ramona Sola ◽  
Elettra Fabbri ◽  
Mattia Merlin ◽  
...  

Towards the end of the last century, vacuum heat treatment of high speed steels was increasingly used in the fabrication of precision cutting tools. This study investigates the influence of vacuum heat treatments at different pressures of quenching gas on the microstructure and mechanical properties of taps made of M35 high speed steel. Taps were characterized by optical microscopy, scanning electron microscopy with energy dispersive spectroscopy, X-ray diffraction, apparent grain size and Vickers hardness measurements, and scratch tests. Failure analysis after tapping tests was also performed to determine the main fracture mechanisms. For all taps, the results showed that microstructures and the values of characteristics of secondary carbides, retained austenite, apparent grain size and Vickers hardness were comparable to previously reported ones for vacuum heat treated high speed steels. For taps vacuum heat treated at six bar, the highest plane strain fracture toughness was due to a higher content of finer small secondary carbides. In contrast, the lowest plane strain fracture toughness of taps vacuum heat treated at eight bar may be due to an excessive amount of finer small secondary carbides, which may provide a preferential path for crack propagation. Finally, the predominant fracture mechanism of taps was quasi-cleavage.


2011 ◽  
Vol 194-196 ◽  
pp. 1464-1469
Author(s):  
Bin Li ◽  
Yi Feng ◽  
Hui Qiang Liu ◽  
Yan Fang Zhu ◽  
Dong Bo Yu ◽  
...  

Different grain size of starting powder was choosed and different sintering additives were used to fabricate Si3N4 ceramics by pressureless sintering. Samples’ relative density and mechanical properties including Vickers hardness, bending strength and fracture toughness were tested. Then XRD, SEM and EDS were carried out to identify phase and observe microstructure and fracture morphology. The result shows that high purity α phase Si3N4 powder of 5 μm is suitable for sintering and combination of 5 wt.% MgO +5 wt.% Y2O3 is most effective within six kinds of sintering aids.


1994 ◽  
Vol 364 ◽  
Author(s):  
S. J. Eck ◽  
A. J. Ardell

AbstractDisk-shaped specimens of polycrystalline NiAl (grain size ∽25 μm), 3 mm in diameter and ranging in thickness from 165 to 370 μm, were indented in their centers to various indentation loads, F, using a Vickers indenter. The yield stress, σy, and apparent fracture stress, σfa, were measured as a function of F, with the indented side in tension, using a miniaturized disk-bend test (MDBT). Fracture does not originate at the indentation for F ≤ 39.2 N. Within this regime of behavior both σy and σfa are slightly larger than in unindented specimens, although σfa passes through a sharp minimum for F < 10 N. For F ≥ 39.2 N fracture originates at the indentations. In this regime σy is essentially constant, but significantly larger than σy at smaller values of F, while σfa decreases steadily with increasing F. We attribute the larger values of σy to strain hardening within the relatively large plastic zone surrounding the indentation. The reduction of σfa with increasing F in this regime occurs because the indentation serves as the point of failure. Fractography reveals NiAl fractures primarily in an intergranular manner. A preliminary estimate of the fracture toughness is 8.54 MPa·a.m1/2, which overestimates the true fracture toughness because σfa exceeds the true fracture stresses.


2010 ◽  
Vol 434-435 ◽  
pp. 173-177 ◽  
Author(s):  
Bao Xia Ma ◽  
Wen Bo Han ◽  
Xing Hong Zhang

Ternary ZrC-SiC-ZrB2 ceramic composites were prepared by hot pressing at 1900 °C for 60 min under a pressure of 30 MPa in argon. The influence of ZrB2 content on the microstructure and mechanical properties of ZrC-SiC-ZrB2 composites was investigated. Examination of SEM showed that the microstructure of the composites consisted of the equiaxed ZrB2, ZrC and SiC grains, and there was a slight tendency of reduction for grain size in ZrC with increasing ZrB2 content. The hardness increased considerably from 23.3 GPa for the ZS material to 26.4 GPa for the ZS20B material. Flexural strength was a strong function of ZrB2 content, increasing from 407 MPa without ZrB2 addition to 627 MPa when the ZrB2 content was 20vol.%. However, the addition of ZrB2 has little influence on the fracture toughness, ranging between 5.5 and 5.7 MPam1/2.


2007 ◽  
Vol 561-565 ◽  
pp. 869-872 ◽  
Author(s):  
Małgorzata Lewandowska ◽  
Kinga Wawer

Hydrostatic extrusion (HE) as a method of metals forming is known for about 100 years. Recently, it has been utilized as an efficient way of grain size refinement down to nanometer scale. In the case of engineering metals, HE processing alters not only grain size but also second phase particles such as intermetallic inclusions and precipitates. During HE processing, these particles significantly change their size, shape and spatial distribution. These changes are accompanied by improvement in properties of processed metals such as fatigue and fracture toughness. In the present work, changes of second phase particles induced by HE are described in a quantitative way for aluminium alloys. Their impact on mechanical properties is also discussed.


Author(s):  
Yuan Li ◽  
Ning Hu ◽  
Takashi Kojima ◽  
Takaomi Itoi ◽  
Tomonori Watanabe ◽  
...  

The unique properties of carbon nanotube (CNT) have made it very attractive as reinforcement in polymer nanocomposites in the hope of effectively improving the mechanical properties. In order to explore the effects of three appealing influencing factors, i.e., acid treatment, pressured curing, and liquid rubber (LR) on mechanical properties of nanocomposites, tensile tests, and single-edge notched bending (SENB) tests are carried out for four types of CNT-reinforced nanocomposites. Compared with type I of nanocomposites using pristine multiwalled carbon nanotube (MWCNT) as reinforcement for epoxy, which are termed as Epoxy/MWCNT, type II of Epoxy/MWCNT-COOH nanocomposites with acid-treated MWCNTs as reinforcement, show obvious improvement on tensile properties and fracture toughness. This positive effect of acid treatment can be attributed to better dispersion of CNTs and stronger interface based on the corresponding fracture surfaces. For type III of P-Epoxy/MWCNT-COOH nanocomposites under pressured curing, although the voids in samples are decreased effectively and the interface is strengthened, there is no expected positive results because of severe CNTs agglomeration. For type IV of P-Epoxy/LR/MWCNT-COOH nanocomposites, addition of LR results in at least around a threefold increase in fracture toughness compared with that of P-Epoxy/MWCNT-COOH, indicating the amazing effect of LR. The present work provides much more choices for fabricating specific CNT-reinforced nanocomposites with desired properties by reasonably combining proper fabrication conditions including acid treatment, pressured curing, liquid rubber with polymer matrix, and reinforcement loading.


Sign in / Sign up

Export Citation Format

Share Document