Creep-Fatigue Interaction in Coke Drums: An Approach Based on API 579-1/ASME FFS-1 2007

Author(s):  
M. Sohel M. Panwala ◽  
K. N. Srinivasan ◽  
S. L. Mehta

Coke Drums are critical equipment in refineries due to variable temperature and pressure. The temperature is also very high and coke drums work in the creep range for some duration of one full cycle. The phenomenon of creep along with fatigue plays a very crucial role in failure of coke drums. In the present study, a coke drum is subjected to pressure–temperature reversal with each cycle of 48 hours duration. Temperature and pressure varies from 65 to 495 °C and 1.72 to 4.62 bar, respectively. The material of construction is 1.25Cr-0.5Mo. This material is in the creep range beyond 454 °C as defined by ASME Section II, Part D. This coke drum is in creep range for 23 hours of one full cycle. The skirt to shell and cone junction is a critical portion of coke drum because it is highly susceptible to creep and fatigue simultaneously. In addition to this, the skirt is provided with slots at specific pitch all around circumference to induce flexibility. This has great influence on creep and fatigue due to localized stress. API 579-1/ASME FFS-1 2007 is used for the creep fatigue interaction in the present case. Non-linear transient thermal analysis is coupled with the elastic-plastic structural analysis for calculation of stresses and strains. These stresses are further used in deducing a creep damage factor and strains are used for deducing permissible cycles for fatigue as per the approach based on API 579-1. A macro is developed in the commercially available Finite Element Code ANSYS 11 for calculation of the creep damage factor and permissible cycles for fatigue. The creep damage factor works out to be 0.01 and this has been used for deducing a fatigue damage factor from creep-fatigue interaction curve. The fatigue damage factor is found to be 0.9. The macro results are validated with theoretical calculations.

Author(s):  
M. Sohel M. Panwala ◽  
S. L. Jaiswal

Coke Drums are critical equipment in refineries due to variable temperature and pressure. The temperature is highly fluctuating which causes the thermal fatigue in coke drums. The phenomenon of this thermal fatigue plays a very crucial role in failure of coke drums. In the present study, a coke drum is subjected to pressure - temperature reversal with each cycle of 48 hours duration. Temperature and pressure varies from 338 to 738 K and 0 to 0.404 MPa, respectively. The material of construction is 1.25Cr-0.5Mo (SA-387 Gr. 11 Cl. 1). This coke drum is at higher temperature of 738 K for 24 hours in one full cycle. The skirt to shell and cone junction is a critical portion of coke drum because it is highly susceptible to fatigue at higher temperature. In addition to this, the skirt is provided with slots at specific pitch all around circumference to induce flexibility. This has great influence on fatigue life due to localized stress at higher temperature. API 579-1/ASME FFS-1 2007 is used for the fatigue life evaluation in the present case. Nonlinear transient thermal analysis is coupled with the elastic-plastic structural analysis for calculation of stresses and strains. These stresses are further used for deducing permissible cycles for fatigue as per the approach based on API 579-1. A Parametric study has been carried out in Finite Element Analysis tool ‘ANSYS-12.1’ for different configuration of skirt to cone junction specifically in terms of inside crotch radius. The effect on fatigue life has been studied with variation in inside crotch radius. It has been found that fatigue life at skirt to cone junction is increasing with increase in crotch radius. But, this increase in crotch radius is adversely effects on slot tip where the life is drastically reducing. Such parametric study can be considered for selection of inside crotch radius for given skirt thickness and diameter.


Author(s):  
Raghu V. Prakash

Creep, creep-fatigue damage is often estimated through in-situ metallography, tensile testing of specimens. However, these methods require specimen preparation which includes specimen extraction from critical components. Automated ball indentation testing has been used as an effective tool to determine the mechanical properties of metallic materials. In this work, the tensile properties of materials subjected to controlled levels of damage in creep, creep-fatigue is studied. It is found that the tensile properties such as yield strength and UTS deteriorates with creep damage, whereas the same specimens show an improved UTS values (at the cost of ductility) when subjected to creep-fatigue interactions.


Author(s):  
Hyeong-Yeon Lee ◽  
Se-Hwan Lee ◽  
Jong-Bum Kim ◽  
Jae-Han Lee

A structural test and evaluation on creep-fatigue damage, and creep-fatigue crack initiation have been carried out for a Mod. 9Cr-1Mo steel structural specimen with weldments. The conservatisms of the design codes of ASME Section III subsection and NH and RCC-MR codes were quantified at the welded joints of Mod.9Cr-1Mo steel and 316L stainless steel with the observed images from the structural test. In creep damage evaluation using the RCC-MR code, isochronous curve has been used rather than directly using the creep law as the RCC-MR specifies. A y-shaped steel specimen of a diameter 500mm, height 440mm and thickness 6.35mm is subjected to creep-fatigue loads with two hours of a hold time at 600°C and a primary nominal stress of 30MPa. The defect assessment procedures of RCC-MR A16 guide do not provide a procedure for Mod.9Cr-1Mo steel yet. In this study application of σd method for the assessment of creep-fatigue crack initiation has been examined for a Mod. 9Cr-1Mo steel structure.


Author(s):  
Michael Sheridan ◽  
David Knowles ◽  
Oliver Montgomery

The R5 volume 2/3 procedures [1] were developed by British Energy (now EDF Energy) to assess the high temperature response of uncracked metallic structures under steady state or cyclic loading. They contain the basic principles of: • Application of reference stress methods • Consideration of elastic follow up • A ductility exhaustion approach to calculate creep damage accumulation. These considerations represent a fundamental distinction from ASME BPVC Section III, Subsection NH [2]. This paper draws on literature review and experience to explain the principal differences in the limits of application, cycle construction and damage calculation between these codes/procedures focusing on creep-fatigue damage determination. The implications of the differences between the codes and standards are explored. The output of this work is aimed at two groups of structural integrity engineers; those using these codes and standards to assess existing conventional and nuclear plant, and also those looking to ASME and R5 to design Generation IV PWRs with design temperatures much elevated from those of Generation III and III+. The conclusions from this paper offer some practical guidance to structural integrity engineers which may assist in selecting the more appropriate procedure to assess creep-fatigue damage for a particular situation.


1985 ◽  
Vol 107 (3) ◽  
pp. 260-270 ◽  
Author(s):  
F. Masuyama ◽  
K. Setoguchi ◽  
H. Haneda ◽  
F. Nanjo

The increase of long-term service exposure to thermal power plants, the tendency toward intermediate and cyclic operation to meet the change in electric power demand and supply situation, and the requirement to develop higher-temperature and higher-pressure plants have led to increasing attention towards the reliability improvement. This paper presents findings from field experiences of cracking or failure and two types of damage analyses—(1) creep-fatigue damage analysis based on the life fraction rule and (2) metallurgical damage analysis—of boiler pressure parts that have been exposed to long-term elevated temperature service. The field experiences are (1) cracking or failure of thick-walled Type 316 stainless steel pressure parts in the main steam line of an ultra-supercritical thermal power plant and (2) dissimilar metal weld joints for boiler tubing. The creep-fatigue damage analysis of these pressure parts showed a reasonable correspondence with the field experience. According to the creep-fatigue damage analysis and the metallurgical damage analysis, most of damage was restrained creep mode phenomenon without deformation. The creep damage was composed of metallurgical damage and mechanical damage such as microvoids and structural defects. One method of simulating field experienced creep damage was proposed and performed. As a result, the process of creep voids being generated and growing into cracks without deformation was successfully observed. Also a review of the current status of nondestructive detecting methods of creep damage suggests that detecting the creep voids metallurgically is more practical at the present time than doing so analyzing the changes in physical properties of the material. It is also suggested that, in the metallurgical approach, detecting the creep voids and cracks by replica method and anlayzing precipitates for evaluation of material deterioration by precipitate extraction method will make it possible to successfully address the problem of plant equipment creep damage evaluation and life prediction.


Author(s):  
Hirokazu Oriyama ◽  
Takashi Kawakami ◽  
Takahiro Kinoshita

Sn-Ag-Cu solder materials have been widely used for the mount process of electronics devices or semiconductor packages on print circuit board (PCB). The solder joints are sometimes opened under thermal cyclic loads as low cycle fatigue phenomenon. The fatigue life of solder joint has been investigated by many researchers with experimental and numerical methods. Generally, the induced thermal stress in solder joints should be relaxed as soon and creep damage is considered to be ignored in order to estimate lives of joints. However, it is probable that long term stress is applied to solder joints by the elastic follow-up phenomenon which are depending on the stiffness ratio between solder joints and the electronics device, because the elastic strain in PCB or the electronics device shifts to creep strain in solder joints gradually during a long time. Then the creep damage of solder joint should be counted for the mechanical design of mounted PCBs. And it is known that the interaction between creep damage and fatigue damage significantly shorten the life. In this study, it was discussed whether the interaction between fatigue damage and creep damage has to be considered or not for the mechanical design of the lead free solder joint with basic creep-fatigue tests at an elevated temperature.


2019 ◽  
Vol 28 (9) ◽  
pp. 1344-1366 ◽  
Author(s):  
Fang-Dai Li ◽  
De-Guang Shang ◽  
Cheng-Cheng Zhang ◽  
Xiao-Dong Liu ◽  
Dao-Hang Li ◽  
...  

The multiaxial thermomechanical fatigue properties for nickel-based superalloy GH4169 in aeroengine turbine discs are investigated in this paper. Four types of axial–torsional thermomechanical fatigue experiments were performed to identify the cyclic deformation behavior and the damage mechanism. The experimental results showed that the creep damage can be generated under thermally in-phase loading while it can be ignored under thermally out-of-phase loading, and the responded stress increasing phenomenon, that is, non-proportional hardening, can be shown under the mechanically out-of-phase strain loading. Based on the analysis of cyclic deformation behavior and damage mechanism, a life prediction method was proposed for multiaxial thermomechanical fatigue, in which the pure fatigue damage, the creep damage, and the interaction between them were simultaneously considered. The pure fatigue damage can be calculated by the isothermal fatigue parameters corresponding to the temperature without creep; the creep damage can be calculated by the principle of subdivision, and the creep–fatigue interaction can be determined by creep damage, fatigue damage, and an interaction coefficient which is used to reflect the creep–fatigue interaction strength. The predicted results showed that the proposed method is reasonable.


Author(s):  
Rami H. Pohja ◽  
Stefan B. Holmström

Design codes, such as RCC-MRx and ASME III NH, for generation IV nuclear reactors use interaction diagram based method for creep-fatigue assessment. In the interaction diagram the fatigue damage is expressed as the ratio of design cycles over the allowable amount of cycles in service and the creep damage as the ratio of time in service over the design life. With this approach it is assumed that these quantities can be added linearly to represent the combined creep-fatigue damage accumulation. Failure is assumed to occur when the sum of the damage reaches a specified value, usually unity or less. The fatigue damage fraction should naturally be unity when no creep damage is present and creep damage should be unity when no fatigue damage is present. However, strict fatigue limits and safety factors used for creep rupture strengths as well as different approaches to relaxation calculation can cause a situation where creep-fatigue test data plotted according to the design rules are three orders of magnitude away from the interaction diagram unity line. Thus, utilizing the interaction diagram methods for predicting the number of creep-fatigue cycles may be inaccurate and from design point of view these methods may be overly conservative. In this paper the results of creep-fatigue tests carried out for austenitic stainless steel 316 and heat resistant ferritic-martensitic steel P91, which are included in the design codes, such as RCC-MRx, are assessed using the interaction diagram method with different levels of criteria for the creep and fatigue fractions. The test results are also compared against the predictions of a recently developed simplified creep-fatigue model which predicts the creep-fatigue damage as a function of strain range, temperature and hold period duration with little amount of fitting parameters. The Φ-model utilizes the creep rupture strength and ultimate tensile strength (UTS) of the material in question as base for the creep-fatigue prediction. Furthermore, challenge of acquiring representative creep damage fractions from the dynamic material response, i.e. cyclic softening with P91 steel, for the interaction diagram based assessment is discussed.


Author(s):  
Tai Asayama ◽  
Robert Jetter

Renewed interest in elevated temperature nuclear reactors has occasioned a reassessment of creep-fatigue damage evaluation methods. Points to be improved in the current methods employed in Subsection NH of the ASME B&PV Code and other design codes are discussed as well as an alternate approach which avoids some of these problems. Most current creep-fatigue damage evaluation methods separately evaluate cyclic fatigue damage and creep damage and assess the combined damage through interaction diagrams. Typically test data are evaluated through a Miner’s Rule summation of fatigue damage and either a time fraction summation of creep damage or a ductility exhaustion approach in order to establish the appropriate interaction curve. In these approaches, cycles to failure can be counted directly but creep damage is a calculated parameter, subject the limitations of the evaluation technique. There can be considerable scatter in the results. The process is reversed for design and the methodology chosen to assess creep damage will have a major impact on the viability of the design process. This was found to be particularly true for advanced alloys such as Mod9Cr-1Mo-V, aka Grade 91. An alternate approach to determination of cyclic life has been proposed which avoids parsing the damage into creep and fatigue components. This approach, called the Simplified Model Test (SMT), employs a test specimen with elastic follow-up sized to represent the stress and strain redistribution encountered in more complex structures. The correlation parameter between test and design is the elastically calculated strain and the dependent test variable is the observed cycles to failure. The SMT approach has two major advantages. First, because the correlation parameter is elastically calculated strain, it is not necessary to calculate the inelastic stress-strain history for a design evaluation; either directly through inelastic analysis or indirectly through manipulation of elastic analyses. Second, because the test specimen itself incorporates the hardening, softening and aging effects of the structure it represents, it is not necessary do rely on theoretical modeling of these effects in an artificial separate accounting of creep and fatigue damage.


Author(s):  
Jie-Fu Chen ◽  
Hou-Yi Li ◽  
Hong-Shu Lin ◽  
Hong-Jie Liu

This paper states the experiment results of investigation of fatigue damage, creep damage and their interaction on 12Cr1MoV steel and welding joint. An envelop of the interaction between fatigue damage and creep damage which could be used in practice was first given in China. This envelop is compared with that of 2.25Cr1Mo steel given in ASME BPVC.


Sign in / Sign up

Export Citation Format

Share Document