Shock Induced Deformation and Damage in Rat Brain Slices

Author(s):  
Jiwoon Kwon ◽  
Sung J. Lee ◽  
Ghatu Subhash ◽  
Michael King ◽  
Malisa Sarntinoranont

Shock-induced traumatic brain injury (TBI) and post traumatic stress disorder (PTSD) have received increasing attention because many soldiers returning from Iraq and Afghanistan suffer from these disorders. The shock loading duration is typically on the order of few hundred microseconds and hence the strain rate of deformation is very high. Therefore, in the current study, high-rate loading experiments were conducted on brain tissue slices which mimic loading durations encountered in shock loading [1]. The polymer split Hopkinson pressure bar (PSHPB) was used to generate high rate loading as a high speed digital camera captured the deformation of brain tissue. To further clarify initial injury events, post-test damage was assessed through histological studies. This experimental model provides the opportunity for time-resolved visualization of actual tissue deformation thus allowing improved ability to isolate damage-sensitive tissue regions.

Materials ◽  
2019 ◽  
Vol 12 (8) ◽  
pp. 1236 ◽  
Author(s):  
Isakov ◽  
Lange ◽  
Kilchert ◽  
May

The initiation and propagation of damage in pure ice specimens under high rate compressive loading at the strain rate range of 100 s−1 to 600 s−1 was studied by means of Split Hopkinson Pressure Bar measurements with incorporated high-speed videography. The results indicate that local cracks in specimens can form and propagate before the macroscopic stress maximum is reached. The estimated crack velocity was in the range of 500 m/s to 1300 m/s, i.e., lower than, but in similar order of magnitude as the elastic wave speed within ice. This gives reason to suspect that already at this strain rate the specimen is not deforming under perfect force equilibrium when the first cracks initiate and propagate. In addition, in contrast to quasi-static experiments, in the high rate experiments the specimens showed notable residual load carrying capacity after the maximum stress. This was related to dynamic effects in fractured ice particles, which allowed the specimen to carry compressive load even in a highly damaged state.


Molecules ◽  
2019 ◽  
Vol 24 (3) ◽  
pp. 542 ◽  
Author(s):  
Zhiyong Xia ◽  
Vanessa D. Alphonse ◽  
Doug B. Trigg ◽  
Tim P. Harrigan ◽  
Jeff M. Paulson ◽  
...  

Several technologies can be used for measuring strains of soft materials under high rate impact conditions. These technologies include high speed tensile test, split Hopkinson pressure bar test, digital image correlation and high speed x-ray imaging. However, none of these existing technologies can produce a continuous 3D spatial strain distribution in the test specimen. Here we report a novel passive strain sensor based on poly(dimethyl siloxane) (PDMS) elastomer with covalently incorporated spiropyran (SP) mechanophore to measure impact induced strains. We have shown that the incorporation of SP into PDMS at 0.25 wt% level can adequately measure impact strains via color change under a high strain rate of 1500 s−1 within a fraction of a millisecond. Further, the color change is fully reversible and thus can be used repeatedly. This technology has a high potential to be used for quantifying brain strain for traumatic brain injury applications.


Author(s):  
Yangqing Dou ◽  
Yucheng Liu ◽  
Wilburn Whittington ◽  
Jonathan Miller

Coefficients and constants of a microstructure-based internal state variable (ISV) plasticity damage model for pure copper have been calibrated and used for damage modeling and simulation. Experimental stress-strain curves obtained from Cu samples at different strain rate and temperature levels provide a benchmark for the calibration work. Instron quasi-static tester and split-Hopkinson pressure bar are used to obtain low-to-high strain rates. Calibration process and techniques are described in this paper. The calibrated material model is used for high-speed impact analysis to predict the impact properties of Cu. In the numerical impact scenario, a 100 mm by 100 mm Cu plate with a thickness of 10 mm will be penetrated by a 50 mm-long Ni rod with a diameter of 10mm. The thickness of 10 mm was selected for the Cu plate so that the Ni-Cu penetration through the thickness can be well observed through the simulations and the effects of the ductility of Cu on its plasticity deformation during the penetration can be displayed. Also, that thickness had been used by some researchers when investigating penetration mechanics of other materials. Therefore the penetration resistance of Cu can be compared to that of other metallic materials based on the simulation results obtained from this study. Through this study, the efficiency of this ISV model in simulating high-speed impact process is verified. Functions and roles of each of material constant in that model are also demonstrated.


Author(s):  
Xueping Zhang ◽  
Rajiv Shivpuri ◽  
Anil K. Srivastava

Beside strain intensity, stress triaxiality (pressure-stress states) is the most important factor to control initiation of ductile fracture in chip segmentation through affecting the loading capacity and strain to failure. The effect of stress triaxiality on failure strain is usually assessed by dynamic Split Hopkinson Pressure Bar (SHPB) or quasi-static tests of tension, compression, torsion, and shear. However, the stress triaxialities produced by these tests are considerably different from those in high speed machining of titanium alloys where adiabatic shear bands (ASB) are associated with much higher strains, stresses and temperatures. This aspect of shear localization and fracture are poorly understood in previous research. This paper aims to demonstrate the role of stress triaxiality in chip segmentation during machining titanium alloy using finite element method. This research promotes a fundamental understanding of thermo-mechanics of the high-speed machining process, and provides a logical insight into the fracture mechanism in discontinuous chips.


2018 ◽  
Vol 183 ◽  
pp. 02035 ◽  
Author(s):  
Anatoly Bragov ◽  
Alexander Konstantinov ◽  
Leopold Kruszka ◽  
Andrey Lomunov ◽  
Andrey Filippov

The combined experimental and theoretical approach was applied to the study of high-speed deformation and fracture of the 1810 stainless steel. The material tests were performed using a split Hopkinson pressure bar to determine dynamic stress-strain curves, strain rate histories, plastic properties and fracture in the strain rate range of 102 ÷ 104 s-1. A scheme has been realized for obtaining a direct tensile load in the SHPB, using a tubular striker and a gas gun of a simple design. The parameters of the Johnson-Cook material model were identified using the experimental results obtained. Using a series of verification experiments under various types of stress-strain state, the degree of reliability of the identified mathematical model of the behavior of the material studied was determined.


2021 ◽  
Author(s):  
KHIZAR ROUF ◽  
MICHAEL J. WORSWICK ◽  
JOHN MONTESANO

The dynamic in-plane shear stress-strain response of a unidirectional non- crimp fabric carbon fiber/snap-cure epoxy composite was studied by subjecting 30° and 45° off-axis specimens to compression loading at high strain rates. Tests were performed using a compression split-Hopkinson pressure bar apparatus where an approximate axial strain rate of 305 s-1 was achieved. Images of the deformed specimen surfaces were captured with high-speed cameras and digital image correlation used to obtain a strain map. Pulse shaping was performed using a copper pulse shaper to achieve dynamic equilibrium during the high-rate tests. The results demonstrated that the in-plane shear yield stress and strength increased by 53% and 68%, respectively, when the strain rate increased from quasi-static to 305 s-1.


Geofluids ◽  
2019 ◽  
Vol 2019 ◽  
pp. 1-12 ◽  
Author(s):  
Ronghua Shu ◽  
Tubing Yin ◽  
Xibing Li

Variation in the heating rate due to different geothermal gradients is a cause of much concern in underground rock engineering such as deep sea and underground tunnels, nuclear waste disposal, and deep mining. By using a split Hopkinson pressure bar (SHPB) and variable-speed heating furnace, the dynamic compressive properties of granite were obtained after treatments at different heating rates and temperatures; these properties mainly included the dynamic compressive strength, peak strain, and dynamic elastic modulus. The mechanism of heating rate action on the granite was simultaneously analyzed, and the macroscopic physical properties were discussed. The microscopic morphological features were obtained by scanning electron microscopy (SEM), and the crack propagation was determined by high-speed video camera. The experimental results show that the dynamic compressive strength and elastic modulus both show an obvious trend of a decrease with the increasing heating rate and temperature; the opposite phenomenon is observed for the peak strain. The relationships among the dynamic compressive properties and temperature could be described by the quadratic function. The ductility of granite is enhanced, and the number and size of cracks increase gradually when the heating rate and temperature increase. The microstructure of rock is weakened by the increased thermal stress, which finally affects the dynamic compressive properties of rock.


2019 ◽  
Vol 86 (12) ◽  
Author(s):  
Keegan J. Moore

Abstract Maintaining preload in bolted joints is critical for the safe and efficient operation of nearly all built-up structures. Dynamic loss of preload during operation occurs when sufficient shear force is applied to the joint such that slip is induced in at least the threads if not the entire bolt. Such shear forces are often realized when the joint is subjected to sustained vibrations, resulting in loosening over relatively long periods of time, or extreme shock loading where loosening occurs over fractions of a second. Modeling of joint loosening often focuses on complex analytical approaches or high-fidelity simulations using finite element models. While such approaches may succeed for a single bolt, they are unfeasible for use in simulations of entire built-up structures, which may possess dozens to thousands of joints. Thus, there is a need for reduced-order models (ROMs) that capture the dominant governing physics, but at drastically lower computational costs. This research introduces a phenomenological ROM for loosening in bolted joints subjected to axial shock excitation. The model introduces a mathematical relationship between the stiffness of the joint and torque of the fastener and treats the torque as a dynamic internal variable governed by a first-order, ordinary differential equation. The proposed ROM is presented then applied to an experimental study of a split-Hopkinson pressure bar with a threaded joint subjected to extreme shock loading. The results demonstrate that the proposed ROM is able to reproduce the dominant effects of loosening in bolted joints subjected to axial shock excitation.


2018 ◽  
Vol 183 ◽  
pp. 02012
Author(s):  
Miloslav Popovič ◽  
Jaroslav Buchar ◽  
Martina Drdlová

The results of dynamic compression and tensile-splitting tests of concrete reinforced by randomly distributed short non – metallic fibres are presented. A Split Hopkinson Pressure Bar combined with a high-speed photographic system, was used to conduct dynamic Brazilian tests. Quasi static test show that the reinforcement of concrete by the non-metallic fibres leads to the improvement of mechanical properties at quasi static loading. This phenomenon was not observed at the high strain rate loading .Some explanation of this result is briefly outlined.


2019 ◽  
Vol 54 (5) ◽  
pp. 659-668 ◽  
Author(s):  
K Rahmani ◽  
GH Majzoobi ◽  
A Atrian

Mg–SiC nanocomposite samples were fabricated using split Hopkinson pressure bar for different SiC volume fractions and under different temperature conditions. The microstructures and mechanical properties of the samples including microhardness and stress–strain curves were captured from quasi-static and dynamic tests carried out using Instron and split Hopkinson pressure bar, respectively. Nanocomposites were produced by hot and high-rate compaction method using split Hopkinson pressure bar. Temperature also significantly affects relative density and can lead to 2.5% increase in density. Adding SiC-reinforcing particles to samples increased their Vickers microhardness from 46 VH to 68 VH (45% increase) depending on the compaction temperature. X-ray diffraction analysis showed that by increasing temperature from 25℃ to 450℃, the Mg crystallite size increases from 37 nm to 72 nm and decreases the lattice strain from 45% to 30%. In quasi-static tests, the ultimate compressive strength for the compaction temperature of 450℃ was improved from 123% for Mg–0 vol.% SiC to 200% for the Mg–10 vol.% SiC samples compared with those of the compaction at room temperature. In dynamic tests, the ultimate strength for Mg–10 vol.% SiC sample compacted at high strain rate increased remarkably by 110% compared with that for Mg–0 vol.% SiC sample compacted at low strain rate.


Sign in / Sign up

Export Citation Format

Share Document