STRAIN RATE-DEPENDENT CHARACTERIZATION OF THE IN-PLANE SHEAR RESPONSE OF A UNIDIRECTIONAL NON-CRIMP FABRIC CARBON FIBER/SNAP-CURE EPOXY COMPOSITE

2021 ◽  
Author(s):  
KHIZAR ROUF ◽  
MICHAEL J. WORSWICK ◽  
JOHN MONTESANO

The dynamic in-plane shear stress-strain response of a unidirectional non- crimp fabric carbon fiber/snap-cure epoxy composite was studied by subjecting 30° and 45° off-axis specimens to compression loading at high strain rates. Tests were performed using a compression split-Hopkinson pressure bar apparatus where an approximate axial strain rate of 305 s-1 was achieved. Images of the deformed specimen surfaces were captured with high-speed cameras and digital image correlation used to obtain a strain map. Pulse shaping was performed using a copper pulse shaper to achieve dynamic equilibrium during the high-rate tests. The results demonstrated that the in-plane shear yield stress and strength increased by 53% and 68%, respectively, when the strain rate increased from quasi-static to 305 s-1.

2018 ◽  
Vol 183 ◽  
pp. 02037 ◽  
Author(s):  
Taamjeed Rahmaan ◽  
Ping Zhou ◽  
Cliff Butcher ◽  
Michael J. Worswick

Shear tests were performed at strain rates ranging from quasi-static (0.01 s-1) to 500 s-1 for AA7075-T6 sheet metal alloy at room temperature. A miniature sized shear specimen was used in this work to perform high strain rate shear testing. Digital image correlation (DIC) techniques were employed to measure the strains in the experiments. At maximum in-plane shear strains greater than 20%, the AA7075-T6 alloy demonstrated a reduced work hardening rate at elevated strain rates. At lower strains, the AA7075-T6 alloy showed mild positive rate sensitivity. The strain to localization (using the Zener-Holloman criterion), measured using the DIC technique, decreased with strain rate in shear loading. The strain at complete failure, however, exhibited an increase at the highest strain rate (500 s-1). The current work also focused on characterization of the thermal conditions occurring during high rate loading in shear with in situ high speed thermal imaging. Experimental results from the highest strain rate (500 s-1) tests showed a notable increase in temperature within the specimen gauge region as a result of the conversion of plastic deformation energy into heat.


Author(s):  
Nitin B. Bhalerao ◽  
Suhas S. Joshi ◽  
N. K. Naik

The titanium alloy (grade 5) is a two-phase material, which finds significant applications in aerospace, medical, marine fields, owing to its superior characteristics like high strength-to-weight ratio, excellent corrosion resistance, and good formability. Hence, the dynamic characteristics of the Ti-6Al-4V alloy are an important area to study. A compressive split Hopkinson pressure bar (SHPB) was used to evaluate the dynamic properties of Ti-6Al-4V alloy under various strain rates between 997 and 1898s−1, and at temperatures between −10 °C and 320 °C. It was evident that the material strength is sensitive to both strain rate and temperature; however, the latter is more predominant than the former. The microstructure of the deformed samples was examined using electron back-scattered diffraction (EBSD). The microscopic observations show that the dynamic impact characteristics of the alloy are higher at higher strain rates than at quasi-static strain rates. The SHPB tests show that the force on the transmitter bar is lower than the force on the incident bar. This indicates that the dynamic equilibrium cannot be achieved during high rate of damage evolution. Various constants in Johnson–Cook (JC) model were evaluated to validate the results. An uncertainty analysis for the experimental results has also been presented.


Author(s):  
Pradeep Lall ◽  
Sandeep Shantaram ◽  
Jeff Suhling ◽  
David Locker

Electronics may experience high strain rates when subjected to high g-loads of shock and vibration. Material and damage behavior of electronic materials at high strain rates typical of shock and vibration is scarce. Previously studies have shown that second-level interconnects have a high propensity for failure under shock and vibration loads in fine pitch electronics. Exposure to shock and vibration is common in a variety of consumer environments such as automotive and portable electronics. The low strain-rate properties of commonly used SnAgCu solders, including Sn1Ag0.5Cu and Sn3Ag0.5Cu, have been found to evolve with time after prolonged exposure to high temperatures. High strain rate properties of leadfree solder alloys in the strain-rate range of 1–100 sec−1 are scarce. Previous attempts at characterizing the high strain rates properties have focused on the use of the Split Hopkinson Pressure Bar (SHPB), which enables measurements of strain rates in the neighborhood of 1000 per sec. In this paper, a new test-technique developed by the authors has been presented for measurement of material constitutive behavior. The instrument enables attaining strain rates in the neighborhood of 1 to 100 per sec. Tests are conducted at strain rates 10, 35 and 50 per sec. High speed cameras operating at 75,000 fps have been used in conjunction with digital image correlation for the measurement of full-field strain during the test. Constancy of cross-head velocity has been demonstrated during the test from the unloaded state to the specimen failure. Solder alloy constitutive behavior has been measured for SAC105, SAC305 solders. Non-linear Ramberg-Osgood model has been used to fit the material data. The Ramberg-Osgood model available in Abaqus has been used for tensile test simulation and to correlate with DIC based experimental strain data.


Materials ◽  
2019 ◽  
Vol 12 (8) ◽  
pp. 1236 ◽  
Author(s):  
Isakov ◽  
Lange ◽  
Kilchert ◽  
May

The initiation and propagation of damage in pure ice specimens under high rate compressive loading at the strain rate range of 100 s−1 to 600 s−1 was studied by means of Split Hopkinson Pressure Bar measurements with incorporated high-speed videography. The results indicate that local cracks in specimens can form and propagate before the macroscopic stress maximum is reached. The estimated crack velocity was in the range of 500 m/s to 1300 m/s, i.e., lower than, but in similar order of magnitude as the elastic wave speed within ice. This gives reason to suspect that already at this strain rate the specimen is not deforming under perfect force equilibrium when the first cracks initiate and propagate. In addition, in contrast to quasi-static experiments, in the high rate experiments the specimens showed notable residual load carrying capacity after the maximum stress. This was related to dynamic effects in fractured ice particles, which allowed the specimen to carry compressive load even in a highly damaged state.


Molecules ◽  
2019 ◽  
Vol 24 (3) ◽  
pp. 542 ◽  
Author(s):  
Zhiyong Xia ◽  
Vanessa D. Alphonse ◽  
Doug B. Trigg ◽  
Tim P. Harrigan ◽  
Jeff M. Paulson ◽  
...  

Several technologies can be used for measuring strains of soft materials under high rate impact conditions. These technologies include high speed tensile test, split Hopkinson pressure bar test, digital image correlation and high speed x-ray imaging. However, none of these existing technologies can produce a continuous 3D spatial strain distribution in the test specimen. Here we report a novel passive strain sensor based on poly(dimethyl siloxane) (PDMS) elastomer with covalently incorporated spiropyran (SP) mechanophore to measure impact induced strains. We have shown that the incorporation of SP into PDMS at 0.25 wt% level can adequately measure impact strains via color change under a high strain rate of 1500 s−1 within a fraction of a millisecond. Further, the color change is fully reversible and thus can be used repeatedly. This technology has a high potential to be used for quantifying brain strain for traumatic brain injury applications.


2018 ◽  
Vol 18 ◽  
pp. 72 ◽  
Author(s):  
Marcel Adorna ◽  
Petr Zlámal ◽  
Tomáš Fíla ◽  
Jan Falta ◽  
Markus Felten ◽  
...  

In this paper Split Hopkinson pressure bar (SHPB) was used for dynamic testing of nickel coated polyurethane hybrid foams. The foams were manufactured by electrodeposition of a nickel coating on the standard open-cell polyurethane foam. High strength aluminium alloy bars instrumented with foil strain-gauges were used for dynamic loading of the specimens. Experiments were observed using a high-speed camera with frame-rate set to approx. 100-150 kfps. Precise synchronisation of the high-speed camera and the strain-gauge record was achieved using a through-beam photoelectric sensor. Dynamic equilibrium in the specimen was achieved in all measurements. Digital image correlation technique (DIC) was used to evaluate in-plane displacements and deformations of the samples. Specimens of two different dimensions were tested to investigate the collapse of the foam structure under high-speed loading at the specific strain-rate and strain.


Metals ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 1196
Author(s):  
Michaela Neuhäuserová ◽  
Tomáš Fíla ◽  
Petr Koudelka ◽  
Jan Falta ◽  
Václav Rada ◽  
...  

Compressive deformation behaviour of additively manufactured lattice structures based on re-entrant tetrakaidecahedral unit-cell geometry were experimentally investigated under quasi-static and dynamic loading conditions. Specimens of four different structures formed by three-dimensional periodical assembly of selected unit-cells were produced by a laser powder bed fusion technique from a powdered austenitic stainless steel SS316L. Quasi-static compression as well as dynamic tests using split Hopkinson pressure bar (SHPB) apparatus at two strain-rates were conducted to evaluate the expected strain-rate sensitivity of the fundamental mechanical response of the structures. To evaluate the experiments, particularly the displacement fields of the deforming lattices, optical observation of the specimens using a high-resolution camera (quasi-static loading) and two synchronised high-speed cameras (SHPB experiments) was employed. An in-house digital image correlation algorithm was used in order to evaluate the anticipated auxetic nature of the investigated lattices. It was found that neither of the investigated structures exhibited auxetic behaviour although strain-rate sensitivity of the stress–strain characteristics was clearly identified for the majority of structures.


2007 ◽  
Vol 340-341 ◽  
pp. 283-288 ◽  
Author(s):  
Jung Han Song ◽  
Hoon Huh

The dynamic response of the turbine blade materials is indispensable for analysis of erosions of turbine blades as a result of impulsive loading associated with gas flow. This paper is concerned with the dynamic material properties of the Inconel 718 alloy which is widely used in the high speed turbine blade. The dynamic response at the corresponding level of the strain rate should be acquired with an adequate experimental technique and apparatus due to the inertia effect and the stress wave propagation. In this paper, the dynamic response of the Inconel 718 at the intermediate strain rate ranged from 1/s to 400/s is obtained from the high speed tensile test and that at the high strain rate above 1000/s is obtained from the split Hopkinson pressure bar test. The effects of the strain rate on the dynamic flow stress, the strain rate sensitivity and the failure elongation are evaluated with the experimental results. Experimental results from both the quasi-static and the high strain rate up to 3000/s are interpolated in order to construct the constitutive relation that should be applied to simulate the dynamic behavior of the turbine blade made of the Inconel 718.


2018 ◽  
Vol 183 ◽  
pp. 02006 ◽  
Author(s):  
Amos Gilat ◽  
Jeremy D. Seidt

The Split Hopkinson Bar (SHB) technique is used for high strain rate testing of T800/F3900 composite in compression, tension and shear. Digital Image Correlation (DIC) is used for measuring the full-field deformation on the surface of the specimen by using Shimadzu HPV-X2 high-speed video camera. Compression tests have been done on specimens machined from a unidirectional laminate in the 0°and 90° directions. Tensile tests were done in the 90° direction. Shear tests were done by using a notched specimen in a compression SHB apparatus. To study the effect of strain rate, quasi-static testing was also done using DIC and specimens with the same geometry as in the SHB tests. The results show that the DIC technique provides accurate strain measurements even at strains that are smaller than 1%. No strain rate effect is observed in compression in the 0° direction and significant strain rate effects are observed in compression and tension in the 90° direction, and in shear.


2018 ◽  
Vol 183 ◽  
pp. 02035 ◽  
Author(s):  
Anatoly Bragov ◽  
Alexander Konstantinov ◽  
Leopold Kruszka ◽  
Andrey Lomunov ◽  
Andrey Filippov

The combined experimental and theoretical approach was applied to the study of high-speed deformation and fracture of the 1810 stainless steel. The material tests were performed using a split Hopkinson pressure bar to determine dynamic stress-strain curves, strain rate histories, plastic properties and fracture in the strain rate range of 102 ÷ 104 s-1. A scheme has been realized for obtaining a direct tensile load in the SHPB, using a tubular striker and a gas gun of a simple design. The parameters of the Johnson-Cook material model were identified using the experimental results obtained. Using a series of verification experiments under various types of stress-strain state, the degree of reliability of the identified mathematical model of the behavior of the material studied was determined.


Sign in / Sign up

Export Citation Format

Share Document