Aerodynamic Applications of SMA FRP Structures: An Active Airfoil, From Idea to Real Hardware

Author(s):  
Moritz Hübler ◽  
Sebastian Nissle ◽  
Martin Gurka ◽  
Ulf Paul Breuer

This contribution focuses on the application potential of active fiber reinforced polymer (FRP) structures with integrated shape memory alloy (SMA) elements for new aerodynamic functions. The advantages of hybrid SMA FRP structures are highlighted and promising application concepts are discussed. Main focus is the development of an active aerodynamic airfoil. Beginning with the idea of an adaptive airfoil, able to bear an application relevant down force at a relatively high deflection, the design process starts with an evaluation of different airfoil actuation concepts. A SMA powered bending beam is a part of the airfoil itself. Applying the finite element method with a suitable model for the active hybrid material, an effective selection of material and design is possible. After manufacturing and assembling of the active hybrid airfoil a comparison of experimental results and simulation is the first proof of success. Finally, the installation of an integrated hardware setup with power source, control and the active airfoil, demonstrating actuation on demand, verifies the potential of the new approach.

Energies ◽  
2021 ◽  
Vol 14 (14) ◽  
pp. 4386
Author(s):  
Muhammad Syahmi Abd Rahman ◽  
Mohd Zainal Abidin Ab Kadir ◽  
Muhamad Safwan Abd Rahman ◽  
Miszaina Osman ◽  
Shamsul Fahmi Mohd Nor ◽  
...  

The advancement of material technology has contributed to the variation of high-performance composites with good electrical insulation and mechanical properties. Their usage in electrical applications has grown since then. In Malaysia, the composite made of Glass Fiber Reinforced Polymer (GFRP) has been adopted for crossarm manufacturing and has successfully served 275 kV lines for a few decades. However, the combination of extreme conditions such as lightning transient and tropical climate can impose threats to the material. These issues have become major topics of discussion among the utilities in the Southeast Asian (SEA) region, and also in previous research. In Malaysia, more than 50% of total interruptions were caused by lightning. Limited studies can be found on the composite crossarm, especially on the square tube GFRP filled crossarm used in Malaysia. Therefore, this paper proposes to study the behavior of the particular GFRP crossarm, by means of its insulation characteristics. Experimental and simulation approaches are used. Throughout the study, the GFRP specimen is known to have an average breakdown strength at 7.2 kV/mm. In addition, the CFO voltages of the crossarm at different lengths are presented, whereby the behavior under dry and wet conditions is comparably discussed. At the same time, the polarity effect on the CFO voltages is highlighted. The maximum E-fields at the immediate moment before breakdown are analyzed by adopting the finite element method (FEM). Non-uniform distribution of E-fields is witnessed at different parts of the crossarm structure. Simultaneously, the maximum field localized on the crossarm immediately before the breakdown is also presented.


2004 ◽  
pp. 239-249

Abstract This chapter details low-temperature test procedures and equipment. It discusses the role temperature plays in the properties of typical engineering materials. The effect that lowering the temperature of a solid has on the mechanical properties of a material is summarized for three principal groups of engineering materials: metals, ceramics, and polymers (including fiber-reinforced polymer). The chapter describes the factors that influence the selection of tensile testing, along with a comparison of tensile and compression tests. It covers the parameters and standards related to tensile testing. The chapter discusses the factors involved in controlling test temperature. Finally, the chapter discusses the safety issues concerning the use of cooled methanol, liquid-nitrogen, and liquid helium.


2012 ◽  
Vol 446-449 ◽  
pp. 3229-3232
Author(s):  
Chao Jiang Fu

The finite element modeling is established for reinforced concrete(RC) beam reinforced with fiber reinforced polymer (FRP) using the serial/parallel mixing theory. The mixture algorithm of serial/parallel rule is studied based on the finite element method. The results obtained from the finite element simulation are compared with the experimental data. The comparisons are made for load-deflection curves at mid-span. The numerical analysis results agree well with the experimental results. Numerical results indicate that the proposed procedure is validity.


2008 ◽  
Vol 47-50 ◽  
pp. 881-885
Author(s):  
Werasak Raongjant ◽  
Meng Jing

In this paper, a reasonable three dimensional finite element beam model was developed to predict the mechanical behaviors of carbon fiber reinforced polymer (CFRP) strengthened RC box beam under combined bending, shear and torque. The comparison of calculated results with the experiment results of torque-twist relationship, the strain developments in steels and CFRP strips and the force of non-linear string element indicates that the finite element method presented in this study can simulate the behavior of beams well.


Materials ◽  
2005 ◽  
Author(s):  
J. N. Baucom ◽  
M. A. Qidwai ◽  
W. R. Pogue ◽  
J. P. Thomas

We are developing a new class of fiber-reinforced polymer composite materials to facilitate imbedding multifunctional features and devices in material systems, and to manage interlaminar stresses at free edges and cut-outs. The idea is centered on introducing one more level of design space by composing plies with individual tiles possessing the same degrees of design freedom that are associated with individual plies. In this work, we have focused on tiling schemes that will allow blending of laminates (lay-ups), where a lay-up suitable for suppressing interlaminar stresses could be placed at necessary locations whereas another lay-up could be used for the main objective. This results in the introduction of matrix-rich tile-to-tile interface pockets in the blending region. Preliminary mechanical testing shows that uniaxially reinforced tiled composites attain stiffness levels near those of their traditional counterparts, yet with a potential degradation of strength. We used the finite element method to investigate the effects of resin-rich pocket size, the use of supporting continuous layers, tile size, and tile overlapping (interface stacking) schemes on stress distribution around interfaces in uniaxially reinforced tiled composites, with the aim to identify parameters controlling overall strength. We discovered that alignment of the resin-rich pockets through the thickness exacerbates stress-concentration and that outer continuous layers on the composite may help in better load transfer. As a first step in the application of this technique for the suppression of delamination at the free edges of holes in laminates, a bilaminate material was modeled, and the concept was shown to be effective in the suppression of edge delamination.


2020 ◽  
Vol 71 (4) ◽  
pp. 339-345
Author(s):  
Mustafa Zor ◽  
Murat Emre Kartal

In this study, control samples of pine (Pinus slyvestris L.), beech (Fagus orientalis L.) and oak (Quercus petreae L.) species were obtained by using fi ber reinforced finger corner joints. Teknobont 200 epoxy and polyvinyl (PVAc) adhesives were used as glue. Bearing in mind the critical loads that may affect their use, experimental samples were tested under diagonal loads. Experimental samples were also analyzed by a computer program using the finite element method (FEM). Finally, experimental data were compared with the results of FEM. The comparisons clearly showed that experimental results and finite element solutions (SAP2000 V17) including semi-rigid connections are in good agreement. As a structural analysis program in furniture engineering designs, FEM can be preferred in terms of reliability and cost.


2017 ◽  
Vol 753 ◽  
pp. 3-7
Author(s):  
Jae Ho Lee ◽  
Sun Hee Kim ◽  
Won Chang Choi ◽  
Soon Jong Yoon

Recently, glass fiber reinforced polymer plastic (GFRP) pipes are widely used in the water-supply system because of their advantages such as light-weight, corrosion resistance, etc. In previous study, we present the equation to predict stiffness factor (EI) of GFRP pipe with two tape-winding FRP layers and polymer mortar layer in between two FRP layers. As a result, it was able to predict in the range of -3% to +7%. In addition to previous study, we attempted to predict stiffness factor (EI) of GFRP pipe by the finite element method (MIDAS Civil 2016). From the study it was found that the finite element method can be used to predict the pipe stiffness of GFRP pipe.


Sign in / Sign up

Export Citation Format

Share Document