Building Up Suitable Contact Forces in Integrally Shrouded Blade Rows for Reducing Vibration Amplitudes

Author(s):  
Nicolò Bachschmid ◽  
Emanuel Pesatori ◽  
Simone Bistolfi ◽  
Massimiliano Sanvito

The beneficial effects of the contact between shrouds are described extensively in recent literature: natural blade frequencies are increased and additional damping is available. Different models are proposed for analyzing its linear and nonlinear behavior, selection of optimum contact forces are proposed for reducing vibration amplitudes to a minimum. Results from different non linear analyses that use different models all based generally on a reduced modal model of the blade row and on the harmonic balance approach for modeling the non linear contact forces, are sometimes contradictory: some claim e.g. that increasing excitation amplitude leads to a reduction of the dynamic magnification factor (due to friction damping increase) some other claim the opposite. The contribution to this topic of the present paper is the analysis of the effect of a “contact shim” which can be inserted in a cavity between adjacent shrouds. The shim generates suitable contact forces between the shrouds of the blades of a row, which without shim would vibrate as free standing blades.

2020 ◽  
Vol 16 (6) ◽  
pp. 891-899 ◽  
Author(s):  
Wissam Zam

Probiotics are viable microorganisms widely used for their claimed beneficial effects on the host health. A wide number of researchers proved that the intake of probiotic bacteria has numerous health benefits which created a big market of probiotic foods worldwide. The biggest challenge in the development of these products is to maintain the viability of bacterial cells during the storage of the product as well as throughout the gastrointestinal tract transit after consumption, so that the claimed health benefits can be delivered to the consumer. Different approaches have been proposed for increasing the resistance of these sensitive microorganisms, including the selection of resistant strains, incorporation of micronutrients, and most recently the use of microencapsulation techniques. Microencapsulation has resulted in enhancing the viability of these microorganisms which allows its wide use in the food industry. In this review, the most common techniques used for microencapsulation of probiotics will be presented, as well as the most usual microcapsule shell materials.


Entropy ◽  
2021 ◽  
Vol 23 (8) ◽  
pp. 940
Author(s):  
Zijing Wang ◽  
Mihai-Alin Badiu ◽  
Justin P. Coon

The age of information (AoI) has been widely used to quantify the information freshness in real-time status update systems. As the AoI is independent of the inherent property of the source data and the context, we introduce a mutual information-based value of information (VoI) framework for hidden Markov models. In this paper, we investigate the VoI and its relationship to the AoI for a noisy Ornstein–Uhlenbeck (OU) process. We explore the effects of correlation and noise on their relationship, and find logarithmic, exponential and linear dependencies between the two in three different regimes. This gives the formal justification for the selection of non-linear AoI functions previously reported in other works. Moreover, we study the statistical properties of the VoI in the example of a queue model, deriving its distribution functions and moments. The lower and upper bounds of the average VoI are also analysed, which can be used for the design and optimisation of freshness-aware networks. Numerical results are presented and further show that, compared with the traditional linear age and some basic non-linear age functions, the proposed VoI framework is more general and suitable for various contexts.


2021 ◽  
Vol 11 (2) ◽  
pp. 466
Author(s):  
Włodzimierz Kęska ◽  
Jacek Marcinkiewicz ◽  
Łukasz Gierz ◽  
Żaneta Staszak ◽  
Jarosław Selech ◽  
...  

The continuous development of computer technology has made it applicable in many scientific fields, including research into a wide range of processes in agricultural machines. It allows the simulation of very complex physical phenomena, including grain motion. A recently discovered discrete element method (DEM) is used for this purpose. It involves direct integration of equations of grain system motion under the action of various forces, the most important of which are contact forces. The method’s accuracy depends mainly on precisely developed mathematical models of contacts. The creation of such models requires empirical validation, an experiment that investigates the course of contact forces at the moment of the impact of the grains. To achieve this, specialised test stations equipped with force and speed sensors were developed. The correct selection of testing equipment and interpretation of results play a decisive role in this type of research. This paper focuses on the evaluation of the force sensor dynamic properties’ influence on the measurement accuracy of the course of the plant grain impact forces against a stiff surface. The issue was examined using the computer simulation method. A proprietary computer software with the main calculation module and data input procedures, which presents results in a graphic form, was used for calculations. From the simulation, graphs of the contact force and force signal from the sensor were obtained. This helped to clearly indicate the essence of the correct selection of parameters used in the tests of sensors, which should be characterised by high resonance frequency.


Robotica ◽  
1995 ◽  
Vol 13 (3) ◽  
pp. 287-295 ◽  
Author(s):  
Venugopal K. Varma ◽  
Uri Tasch

SummaryWhen an object is held by a multi-fingered hand, the values of the contact forces can be multivalued. An objective function, when used in conjunction with the frictional and geometric constraints of the grasp, can however, give a unique set of finger force values. The selection of the objective function in determining the finger forces is dependent on the type of grasp required, the material properties of the object, and the limitations of the röbot fingers. In this paper several optimization functions are studied and their merits highlighted. The paper introduces a graphical representation of the finger force values and the objective functions that enable one to select and compare various grasping configurations. The impending motion of the object at different torque and finger force values are determined by observing the normalized coefficient of friction plots.


Author(s):  
P. Chraska ◽  
V. Brozek ◽  
B.J. Kolman ◽  
J. Ilavsky ◽  
K. Neufuss ◽  
...  

Abstract Porosity regulates the deposit's properties and therefore methods for its control are of a vital industrial importance. Thermal spraying can produce deposits in a wide range of porosities by selection of a spray process itself, by selection of spray parameters, feedstock size and chemistry, etc. Manufacturing of deposits with controlled porosity may be difficult if the selection of spray processes and materials is limited. Special methods of deposition or/and subsequent post processing may be therefore necessary. These methods are studied in the presented work. All spraying was done with the water-stabilized plasma (WSP®) system PAL 160. Thick deposits and free-standing parts were sprayed from alumina, zircon, metal Al and Ni powders and their combinations. Porosity was characterized by number of techniques such as gas permeability, water immersion, MIP, SEM and SANS. Mechanical properties were characterized by the Young's modulus. Special methods of deposition, such as spraying of mixtures of ceramics and metals were successfully used. Either sandwiched-structures with alternating layers of ceramics and metals were sprayed (for the sealing purpose) or mechanical mixtures of ceramic and metallic feedstock were sprayed. Several post-processing methods were used to change porosity volumes or other materials characteristics. To increase the porosity the metallic phases were subsequently removed by leaching or by annealing at temperatures above the melting point of metal. A number of sealing materials (organic and inorganic) were used to seal the pores by infiltration at ambient or higher pressures. The results show, that significant changes of porosity volume and, especially, of the gas permeability are possible. Another tested method was annealing/calcination of deposits, which resulted in an increase or decrease of porosity, depending on deposit's chemistry and annealing conditions. Results show that all used post processings are capable of significant changes of deposit microstructure and that they may be successfully applied in practice.


Author(s):  
Sherif Rashed

ISUM (The Idealized Structural Unit Method) was born in 1972 to efficiently and accurately analyze the behavior of large size structures up to and beyond their ultimate strength. In this method a structure is divided into large elements, basically its structural units (members). Geometric and material non-linear behavior inside the element is formulated and expressed at a limited number of nodal points at the element boundaries. In this way a large structure can be modeled using a coarse mesh while still being able to consider the nonlinear behavior until the collapse of the structure. Several ISUM elements have been formulated and used to analyze the non-linear behavior of large ship structures. In further developments, more elements with more accurate formulations have been developed and more types of structures have been analyzed using this method. The same ISUM concept has been applied to the analysis of welding deformation of large welded structures and to failure analysis of structural and mechanical components subjected to impact loads. In this paper, the basic ISUM concept is outlined, and several elements are presented. Examples of applications to ships and marine structures are presented demonstrating the effectiveness of the method. Recent developments are also reviewed and future potential is explored.


2012 ◽  
Vol 22 ◽  
pp. 35-40 ◽  
Author(s):  
Daniel Wilson

“Miraculous agitation” denotes an acoustic marvel: a striking sound emerging from vibrating physical systems. A somewhat subjective phenomenon, acoustic marvels are typified by expressive or harmonic richness, and their production is reliant on delicate interrelationships between objects under vibration, often involving chaotic or nonlinear behavior. In some cases it is even possible to observe emergent behavior. Significantly, acoustic marvels may commonly strike the auditor as seeming to be “of electronic origin,” thus pointing toward postelectronic electroacoustic techniques. This paper takes a qualitative approach to the examination of such acoustic marvels and their possible applications in new music composition.


2020 ◽  
Vol 69 (1-2) ◽  
pp. 5-11
Author(s):  
Dijana Kulačanin ◽  
Sandra Bijelić ◽  
Jovana Šućur ◽  
Borivoje Bogdanović ◽  
Sezai Ercisli ◽  
...  

SummaryThe beneficial effects of walnuts and walnut products on human health, due primarily to their rich polyphenolic content, have been appreciated as an empirical fact for centuries. The purpose of this study is to determine the polyphenolic contents of liqueurs made from the walnut selections ‘Rasna’ and ‘Sava’ and the walnut cultivar ‘Šampion’ (all harvested at three different times), as well as the polyphenolic contents of their green husks. The walnut liqueurs were prepared according to two traditional recipes using young walnut fruits. The highest antioxidant capacity was recorded in the liqueur made from the ‘Rasna’ walnut selection (89.94%), whereas the highest contents of phenols (83.28 mg GAE/g FW), flavonoids (0.83 mg QE/g FW) and proanthocyanidins were found in the liqueur made from the ‘Šampion’ cultivar (14.75 mg CE/g FW). The youngest ‘Rasna’ walnuts, harvested at the first experimental time point, exhibited the highest phenolic and tannin contents, whereas the highest flavonoid content was observed in the ‘Šampion’ cultivar. The biochemical results obtained indicate a decrease in the polyphenolic content of walnut fruits with their growth and development. Moreover, the polyphenolic profiles of the walnut liqueurs considered were found to be greatly affected by the method of preparation and the cultivar/selection of walnuts.


Author(s):  
Joseph Roberts ◽  
Peter Green ◽  
Kate Black ◽  
Christopher Sutcliffe

Binder jet printed components typically have low overall density in the green state and high shrinkage and deformation after heat treatment. It has previously been demonstrated that, by including nanoparticles of the same material in the binder, these properties can be improved as the nanoparticles can fill the interstices and pore throats between the bed particles. The beneficial effects from using these additive binder particles can be improved by maximising the binder particle size, enabling the space within the powder bed to be filled with a higher packing efficiency. The selection of maximum particle size for a binder requires detailed knowledge of the pores and pore throats between the powder bed particles. In this paper, a raindrop model is developed to determine the critical radius at which binder particles can pass between pores and penetrate the bed. The model is validated against helium pycnometry measurements and binder particle drop tests. It is found that the critical radius can be predicted, with acceptable accuracy, using a linear function of the mean and standard deviation of the particle radii. Percolation theory concepts have been employed in order to generalise the results for powder beds that have different mean particle sizes and size distributions. The results of this work can be employed to inform the selection of particle sizes required for binder formulations, to optimise density and reduce shrinkage in printed binder jet components.


Sign in / Sign up

Export Citation Format

Share Document