Whole body fluorescence lifetime multiplexing of tumor receptor expression

Author(s):  
Rahul Pal ◽  
Homan Kang ◽  
Hak Soo Choi ◽  
Gabriel D. Duda ◽  
Anand T. N. Kumar
2012 ◽  
Vol 302 (11) ◽  
pp. R1235-R1249 ◽  
Author(s):  
Sara Stridh ◽  
Fredrik Palm ◽  
Peter Hansell

The glycosaminoglycan (GAG) hyaluronan (HA) is recognized as an important structural component of the extracellular matrix, but it also interacts with cells during embryonic development, wound healing, inflammation, and cancer; i.e., important features in normal and pathological conditions. The specific physicochemical properties of HA enable a unique hydration capacity, and in the last decade it was revealed that in the interstitium of the renal medulla, where the HA content is very high, it changes rapidly depending on the body hydration status while the HA content of the cortex remains unchanged at very low amounts. The kidney, which regulates fluid balance, uses HA dynamically for the regulation of whole body fluid homeostasis. Renomedullary HA elevation occurs in response to hydration and during dehydration the opposite occurs. The HA-induced alterations in the physicochemical characteristics of the interstitial space affects fluid flux; i.e., reabsorption. Antidiuretic hormone, nitric oxide, angiotensin II, and prostaglandins are classical hormones/compounds involved in renal fluid handling and are important regulators of HA turnover during variations in hydration status. One major producer of HA in the kidney is the renomedullary interstitial cell, which displays receptors and/or synthesis enzymes for the hormones mentioned above. During several kidney disease states, such as ischemia-reperfusion injury, tubulointerstitial inflammation, renal transplant rejection, diabetes, and kidney stone formation, HA is upregulated, which contributes to an abnormal phenotype. In these situations, cytokines and other growth factors are important stimulators. The immunosuppressant agent cyclosporine A is nephrotoxic and induces HA accumulation, which could be involved in graft rejection and edema formation. The use of hyaluronidase to reduce pathologically overexpressed levels of tissue HA is a potential therapeutic tool since diuretics are less efficient in removing water bound to HA in the interstitium. Although the majority of data describing the role of HA originate from animal and cell studies, the available data from humans demonstrate that an upregulation of HA also occurs in diabetic kidneys, in transplant-rejected kidneys, and during acute tubular necrosis. This review summarizes the current knowledge regarding interstitial HA in the role of regulating kidney function during normal and pathological conditions. It encompasses mechanistic insights into the background of the heterogeneous intrarenal distribution of HA; i.e., late nephrogenesis, its regulation during variations in hydration status, and its involvement during several pathological conditions. Changes in hyaluronan synthases, hyaluronidases, and binding receptor expression are discussed in parallel.


2017 ◽  
Author(s):  
Alena Rudkouskaya ◽  
Nattawut Sinsuebphon ◽  
Jamie Ward ◽  
Kate Tubbesing ◽  
Xavier Intes ◽  
...  

Maintaining an intact tumor environment is critical for quantitation of receptor-ligand engagement in a targeted drug development pipeline. However, measuring receptor-ligand engagement in vivo and non-invasively in preclinical settings is extremely challenging. We found that quantitation of intracellular receptor-ligand binding can be achieved using whole-body macroscopic lifetime-based Förster Resonance Energy Transfer (FRET) imaging in intact, live animals bearing tumor xenografts. We determined that FRET levels report on ligand binding to transferrin receptors conversely to raw fluorescence intensity. We then established that FRET levels in heterogeneous tumors correlate with intracellular ligand binding but strikingly, not with ubiquitously used ex vivo receptor expression assessment. Hence, MFLI-FRET provides a direct measurement of systemic delivery, target availability and intracellular drug delivery in intact animals. Here, we have used MFLI to measure FRET longitudinally in intact animals for the first time. MFLI-FRET is well–suited for guiding the development of targeted drug therapy in heterogeneous intact, live small animals.


Animals ◽  
2020 ◽  
Vol 10 (6) ◽  
pp. 1028 ◽  
Author(s):  
Jonas Habel ◽  
Albert Sundrum

Immune cell functions such as phagocytosis and synthesis of immunometabolites, as well as immune cell survival, proliferation and differentiation, largely depend on an adequate availability of glucose by immune cells. During inflammation, the glucose demands of the immune system may increase to amounts similar to those required for high milk yields. Similar metabolic pathways are involved in the adaptation to both lactation and inflammation, including changes in the somatotropic axis and glucocorticoid response, as well as adipokine and cytokine release. They affect (i) cell growth, proliferation and activation, which determines the metabolic activity and thus the glucose demand of the respective cells; (ii) the overall availability of glucose through intake, mobilization and gluconeogenesis; and (iii) glucose uptake and utilization by different tissues. Metabolic adaptation to inflammation and milk synthesis is interconnected. An increased demand of one life function has an impact on the supply and utilization of glucose by competing life functions, including glucose receptor expression, blood flow and oxidation characteristics. In cows with high genetic merits for milk production, changes in the somatotropic axis affecting carbohydrate and lipid metabolism as well as immune functions are profound. The ability to cut down milk synthesis during periods when whole-body demand exceeds the supply is limited. Excessive mobilization and allocation of glucose to the mammary gland are likely to contribute considerably to peripartal immune dysfunction.


2007 ◽  
Vol 6 (4) ◽  
pp. 7290.2007.00020 ◽  
Author(s):  
Walter Akers ◽  
Frederic Lesage ◽  
Dewey Holten ◽  
Samuel Achilefu

The biodistribution of two near-infrared fluorescent agents was assessed in vivo by time-resolved diffuse optical imaging. Bacteriochlorophyll a (BC) and cypate-glysine-arginine-aspartic acid-serine-proline-lysine-OH (Cyp-GRD) were administered separately or combined to mice with subcutaneous xenografts of human breast adenocarcinoma and slow-release estradiol pellets for improved tumor growth. The same excitation (780 nm) and emission (830 nm) wavelengths were used to image the distinct fluorescence lifetime distribution of the fluorescent molecular probes in the mouse cancer model. Fluorescence intensity and lifetime maps were reconstructed after raster-scanning whole-body regions of interest by time-correlated single-photon counting. Each captured temporal point-spread function (TPSF) was deconvolved using both a single and a multiexponental decay model to best determine the measured fluorescence lifetimes. The relative signal from each fluorophore was estimated for any region of interest included in the scanned area. Deconvolution of the individual TPSFs from whole-body fluorescence intensity scans provided corresponding lifetime images for comparing individual component biodistribution. In vivo fluorescence lifetimes were determined to be 0.8 ns (Cyp-GRD) and 2 ns (BC). This study demonstrates that the relative biodistribution of individual fluorophores with similar spectral characteristics can be compartmentalized by using the time-domain fluorescence lifetime gating method.


2021 ◽  
Vol 184 (5) ◽  
pp. 687-697
Author(s):  
Peter Breining ◽  
Steen B Pedersen ◽  
Mads Kjolby ◽  
Jacob B Hansen ◽  
Niels Jessen ◽  
...  

Objective Activation of brown adipose tissue is a promising strategy to treat and prevent obesity and obesity-related disorders. Activation of uncoupling protein 1 (UCP1) leads to uncoupled respiration and dissipation of stored energy as heat. Induction of UCP1-rich adipocytes in white adipose tissue, a process known as ‘browning’, serves as an alternative strategy to increase whole body uncoupling capacity. Here, we aim to assess the association between parathyroid hormone (PTH) receptor expression and UCP1 expression in human adipose tissues and to study PTH effects on human white and brown adipocyte lipolysis and UCP1 expression. Design A descriptive study of human neck adipose tissue biopsies substantiated by an interventional study on human neck-derived adipose tissue cell models. Methods Thermogenic markers and PTH receptor gene expression are assessed in human neck adipose tissue biopsies and are related to individual health records. PTH-initiated lipolysis and thermogenic gene induction are assessed in cultured human white and brown adipocyte cell models. PTH receptor involvement is investigated by PTH receptor silencing. Results PTH receptor gene expression correlates with UCP1 gene expression in the deep-neck adipose tissue in humans. In cell models, PTH receptor stimulation increases lipolysis and stimulates gene transcription of multiple thermogenic markers. Silencing of the PTH receptor attenuates the effects of PTH indicating a direct PTH effect via this receptor. Conclusion PTH 1 receptor stimulation by PTH may play a role in human adipose tissue metabolism by affecting lipolysis and thermogenic capacity.


2020 ◽  
Vol 22 (Supplement_2) ◽  
pp. ii154-ii154
Author(s):  
Anat Mordechai ◽  
Ofer Shamni ◽  
Nomi Zalcman ◽  
Samuel Moscovici ◽  
Alexandre Chicheportiche ◽  
...  

Abstract BACKGROUND GBM is associated with poor overall survival partly due to lack of effective treatment. Recently we showed that androgen receptor (AR) protein is overexpressed in 56% of GBM specimens and that AR antagonists induced dose-dependent death in several glioblastoma cell lines. Treatment of mice implanted with human GBM with AR antagonists significantly reduced the growth of the tumor and prolonged the lifespan of the mice. 18f-fluorine-radiolabeled Dihidrotestosteron (DHT), a natural ligand of AR, [16β-18F-fluoro-5α-dihydrotestosterone ([18F]-FDHT)] is one of the PET tracers used to detect AR expression in metastatic prostate cancer. The aim of this study was to identify AR-expressing GBM tumors in real time using PET-CT scan with [18F]-FDHT. MATERIALS AND METHODS Twelve patients with GBM underwent a dynamic (first 30 min) and whole body static (later 60-80 min) [18F]-FDHT PET/CT (296-370 MBq) scans 2-4 days prior to the surgery or biopsy. Protein was extracted from the tumor and subjected to western blot analysis. AR Protein fold change of each tumor sample was calculated by densitometry analysis compared with that of normal brain, following normalization to GAPDH. RESULTS At ~60 min after injection, 6 of the 12 patients showed significantly higher tumor accumulation of [18F]-FDHT, compared to reference tissue (SUV/Control)mean: 1.33-2.63 fold, (SUV/control)max: 1.4-3.43 fold. The patient who had higher tumor accumulation of [18F]-FDHT, demonstrated also high (1.6-2.27 fold/normal brain) AR protein expression within the tumor. Pearson-correlation-coefficient analysis for the (SUV/Control)mean at ~60 min after the injection versus AR protein expression, was positive and significant (R=0.841;p=0.0024). CONCLUSION This study demonstrated for the first time that [18F]-FDHT PET can identify AR-positive-GBM-tumors (with sensitivity and specificity at 100%) and may therefore be a powerful tool to select patients eligible for treatment with AR antagonists. It could possibly be employed also to monitor treatment response and/or progression during the course of therapy.


2017 ◽  
Author(s):  
Ding Li ◽  
Stacey D. Finley

AbstractMultiple promoters and inhibitors mediate angiogenesis, the formation of new blood vessels, and these factors represent potential targets for impeding vessel growth in tumors. Vascular endothelial growth factor (VEGF) is a potent angiogenic factor targeted in anti-angiogenic cancer therapies. In addition, thrombospondin-1 (TSP1) is a major endogenous inhibitor of angiogenesis, and TSP1 mimetics are being developed as an alternative type of anti-angiogenic agent. The combination of bevacizumab, an anti-VEGF agent, and ABT-510, a TSP1 mimetic, has been tested in clinical trials to treat advanced solid tumors. However, the patients’ responses are highly variable and show disappointing outcomes. To obtain mechanistic insight into the effects of this combination anti-angiogenic therapy, we have constructed a novel whole-body systems biology model including the VEGF and TSP1 reaction networks. Using this molecular-detailed model, we investigated how the combination anti-angiogenic therapy changes the amounts of pro-angiogenic and anti-angiogenic complexes in cancer patients. We particularly focus on answering the question of how the effect of the combination therapy is influenced by tumor receptor expression, one aspect of patient-to-patient variability. Overall, this model complements the clinical administration of combination anti-angiogenic therapy, highlights the role of tumor receptor variability in the heterogeneous responses to anti-angiogenic therapy, and identifies the tumor receptor profiles that correlate with a high likelihood of a positive response to the combination therapy. Our model provides novel understanding of the VEGF-TSP1 balance in cancer patients at the systems-level and could be further used to optimize combination anti-angiogenic therapy.


Cancers ◽  
2019 ◽  
Vol 11 (10) ◽  
pp. 1614 ◽  
Author(s):  
Salvatore ◽  
Caprio ◽  
Hill ◽  
Sarnella ◽  
Roviello ◽  
...  

Breast cancer remains the most frequent cancer in women with different patterns of disease progression and response to treatments. The identification of specific biomarkers for different breast cancer subtypes has allowed the development of novel targeting agents for imaging and therapy. To date, patient management depends on immunohistochemistry analysis of receptor status on bioptic samples. This approach is too invasive, and in some cases, not entirely representative of the disease. Nuclear imaging using receptor tracers may provide whole-body information and detect any changes of receptor expression during disease progression. Therefore, imaging is useful to guide clinicians to select the best treatments for each patient and to evaluate early response thus reducing unnecessary therapies. In this review, we focused on the development of novel tracers that are ongoing in preclinical and/or clinical studies as promising tools to lead treatment decisions for breast cancer management.


Sign in / Sign up

Export Citation Format

Share Document