scholarly journals Concurrent Measurement of Global Positioning System and Event-Based Physical Activity Data: A Methodological Framework for Integration

Author(s):  
Anna M.J. Iveson ◽  
Malcolm H. Granat ◽  
Brian M. Ellis ◽  
Philippa M. Dall

Objective: Global positioning system (GPS) data can add context to physical activity data and have previously been integrated with epoch-based physical activity data. The current study aimed to develop a framework for integrating GPS data and event-based physical activity data (suitable for assessing patterns of behavior). Methods: A convenience data set of concurrent GPS (AMOD) and physical activity (activPAL) data were collected from 69 adults. The GPS data were (semi)regularly sampled every 5 s. The physical activity data output was presented as walking events, which are continuous periods of walking with a time-stamped start time and duration (to nearest 0.1 s). The GPS outcome measures and the potential correspondence of their timing with walking events were identified and a framework was developed describing data integration for each combination of GPS outcome and walking event correspondence. Results: The GPS outcome measures were categorized as those deriving from a single GPS point (e.g., location) or from the difference between successive GPS points (e.g., distance), and could be categorical, scale, or rate outcomes. Walking events were categorized as having zero (13% of walking events, 3% of walking duration), or one or more (52% of walking events, 75% of walking duration) GPS points occurring during the event. Additionally, some walking events did not have GPS points suitably close to allow calculation of outcome measures (31% of walking events, 22% of walking duration). The framework required different integration approaches for each GPS outcome type, and walking events containing zero or more than one GPS points.

2017 ◽  
Author(s):  
Paul McCrorie ◽  
David Walker ◽  
Anne Ellaway

BACKGROUND Large-scale primary data collections are complex, costly, and time-consuming. Study protocols for trial-based research are now commonplace, with a growing number of similar pieces of work being published on observational research. However, useful additions to the literature base are publications that describe the issues and challenges faced while conducting observational studies. These can provide researchers with insightful knowledge that can inform funding proposals or project development work. OBJECTIVES In this study, we identify and reflectively discuss the unforeseen or often unpublished issues associated with organizing and implementing a large-scale objectively measured physical activity and global positioning system (GPS) data collection. METHODS The SPACES (Studying Physical Activity in Children’s Environments across Scotland) study was designed to collect objectively measured physical activity and GPS data from 10- to 11-year-old children across Scotland, using a postal delivery method. The 3 main phases of the project (recruitment, delivery of project materials, and data collection and processing) are described within a 2-stage framework: (1) intended design and (2) implementation of the intended design. RESULTS Unanticipated challenges arose, which influenced the data collection process; these encompass four main impact categories: (1) cost, budget, and funding; (2) project timeline; (3) participation and engagement; and (4) data challenges. The main unforeseen issues that impacted our timeline included the informed consent process for children under the age of 18 years; the use of, and coordination with, the postal service to deliver study information and equipment; and the variability associated with when participants began data collection and the time taken to send devices and consent forms back (1-12 months). Unanticipated budgetary issues included the identification of some study materials (AC power adapter) not fitting through letterboxes, as well as the employment of fieldworkers to increase recruitment and the return of consent forms. Finally, we encountered data issues when processing physical activity and GPS data that had been initiated across daylight saving time. CONCLUSIONS We present learning points and recommendations that may benefit future studies of similar methodology in their early stages of development.


2021 ◽  
Vol 10 (4) ◽  
pp. 230
Author(s):  
Onel Pérez-Fernández ◽  
Juan Carlos García-Palomares

Moped-style scooters are one of the most popular systems of micro-mobility. They are undoubtedly good for the city, as they promote forms of environmentally-friendly mobility, in which flexibility helps prevent traffic build-up in the urban centers where they operate. However, their increasing numbers are also generating conflicts as a result of the bad behavior of users, their unwarranted use in public spaces, and above all their parking. This paper proposes a methodology for finding parking spaces for shared motorcycle services using Geographic information system (GIS) location-allocation models and Global Positioning System (GPS) data. We used the center of Madrid and data from the company Muving (one of the city’s main operators) for our case study. As well as finding the location of parking spaces for motorbikes, our analysis examines how the varying distribution of demand over the course of the day affects the demand allocated to parking spaces. The results demonstrate how reserving a relatively small number of parking spaces for scooters makes it possible to capture over 70% of journeys in the catchment area. The daily variations in the distribution of demand slightly reduce the efficiency of the network of parking spaces in the morning and increase it at night, when demand is strongly focused on the most central areas.


2016 ◽  
Vol 11 (3) ◽  
Author(s):  
Bart Dewulf ◽  
Tijs Neutens ◽  
Delfien Van Dyck ◽  
Ilse De Bourdeaudhuij ◽  
Steven Broekx ◽  
...  

Physical activity is an important facilitator for health and wellbeing, especially for late middle-aged adults, who are more susceptible to cardiovascular diseases. Physical activity performed in green areas is supposed to be particularly beneficial, so we studied whether late middle- aged adults are more active in green areas than in non-green areas and how this is influenced by individual characteristics and the level of neighbourhood greenness. We tracked 180 late middle-aged (58 to 65 years) adults using global positioning system and accelerometer data to know whether and where they were sedentary or active. These data were combined with information on land use to obtain information on the greenness of sedentary and active hotspots. We found that late middle-aged adults are more physically active when spending more time in green areas than in non-green areas. Spending more time at home and in non-green areas was found to be associated with more sedentary behaviour. Time spent in non-green areas was found to be related to more moderate-to-vigorous physical activity (MVPA) for males and to less MVPA for females. The positive association between time spent in green areas and MVPA was the strongest for highly educated people and for those living in a green neighbourhood. This study shows that the combined use of global positioning system and accelerometer data facilitates understanding of where people are sedentary or physically active, which can help policy makers encourage activity in this age cohort.


PLoS ONE ◽  
2015 ◽  
Vol 10 (2) ◽  
pp. e0117094 ◽  
Author(s):  
Elizabeth A. Bruno ◽  
James W. Guthrie ◽  
Stephen A. Ellwood ◽  
Richard J. Mellanby ◽  
Dylan N. Clements

2020 ◽  
Vol 14 (1) ◽  
pp. 113-118 ◽  
Author(s):  
Y. Facio ◽  
M. Berber

AbstractPost Processed Static (PPS) and Precise Point Positioning (PPP) techniques are not new; however, they have been refined over the decades. As such, today these techniques are offered online via GPS (Global Positioning System) data processing services. In this study, one Post Processed Static (OPUS) and one Precise Point Positioning (CSRS-PPP) technique is used to process 24 h GPS data for a CORS (Continuously Operating Reference Stations) station (P565) duration of year 2016. By analyzing the results sent by these two online services, subsidence is determined for the location of CORS station, P565, as 3–4 cm for the entire year of 2016. In addition, precision of these two techniques is determined as ∼2 cm. Accuracy of PPS and PPP results is 0.46 cm and 1.21 cm, respectively. Additionally, these two techniques are compared and variations between them is determined as 2.5 cm.


2018 ◽  
Vol 15 (7) ◽  
pp. 523-530 ◽  
Author(s):  
Kosuke Tamura ◽  
Jeffrey S. Wilson ◽  
Robin C. Puett ◽  
David B. Klenosky ◽  
William A. Harper ◽  
...  

Background: Concurrent use of accelerometers and global positioning system (GPS) data can be used to quantify physical activity (PA) occurring on trails. This study examined associations of trail use with PA and sedentary behavior (SB) and quantified on trail PA using a combination of accelerometer and GPS data. Methods: Adults (N = 142) wore accelerometer and GPS units for 1–4 days. Trail use was defined as a minimum of 2 consecutive minutes occurring on a trail, based on GPS data. We examined associations between trail use and PA and SB. On trail minutes of light-intensity, moderate-intensity, and vigorous-intensity PA, and SB were quantified in 2 ways, using accelerometer counts only and with a combination of GPS speed and accelerometer data. Results: Trail use was positively associated with total PA, moderate-intensity PA, and light-intensity PA (P < .05). On trail vigorous-intensity PA minutes were 346% higher when classified with the combination versus accelerometer only. Light-intensity PA, moderate-intensity PA, and SB minutes were 15%, 91%, and 85% lower with the combination, respectively. Conclusions: Adult trail users accumulated more PA on trail use days than on nontrail use days, indicating the importance of these facilities for supporting regular PA. The combination of GPS and accelerometer data for quantifying on trail activity may be more accurate than accelerometer data alone and is useful for classifying intensity of activities such as bicycling.


2015 ◽  
Vol 804 ◽  
pp. 279-282
Author(s):  
Nithiwatthn Choosakul

The variation of water vapor can be detected from the Global Positioning System (GPS) data. The GPS signal was delayed when propagated through the wet atmosphere. The delayed signal can be retrieved into Precipitation Water Vapor (PWV) data. The GPS data of CUSV station from 2009 to 2012 were used in this research. The results showed that the PWV varied during the summer of Thailand. The PWV were slightly increased from 20 mm at the beginning of the season to 40 mm at the end of season. The increased PWV data were shown as linear line. A slope of the linear line may relate with the amount of the cumulative rain in the season. The steeper line might relate to the great number of raining in the end of the season, otherwise, the fairly gradual line might relate to the raining at any time in the season. The high level of PWV up to around 33 mm could induce the rain in the summer of Thailand.


Author(s):  
Thobias Sando ◽  
Renatus Mussa ◽  
John Sobanjo ◽  
Lisa Spainhour

Global positioning system (GPS) has been identified as a potential tool for capturing crash location data. This study quantifies factors that could affect the accuracy of GPS receivers. The results showed that GPS receiver orientation, site obstructions, and weather have significant effects on the accuracy of GPS receivers. Time of day and number of satellites were not found to significantly affect the accuracy of GPS receivers. HDOP values of 1.2 or less were found to be adequate for crash location purposes. An accuracy improvement of 20.7% was realized by filtering GPS data based on HDOP values.


Sign in / Sign up

Export Citation Format

Share Document