scholarly journals Solution-processed transparent ferroelectric nylon thin films

2019 ◽  
Vol 5 (8) ◽  
pp. eaav3489 ◽  
Author(s):  
Saleem Anwar ◽  
Daniel Pinkal ◽  
Wojciech Zajaczkowski ◽  
Philipp von Tiedemann ◽  
Hamed Sharifi Dehsari ◽  
...  

Ferroelectricity, a bistable ordering of electrical dipoles in a material, is widely used in sensors, actuators, nonlinear optics, and data storage. Traditional ferroelectrics are ceramic based. Ferroelectric polymers are inexpensive lead-free materials that offer unique features such as the freedom of design enabled by chemistry, the facile solution-based low-temperature processing, and mechanical flexibility. Among engineering polymers, odd nylons are ferroelectric. Since the discovery of ferroelectricity in polymers, nearly half a century ago, a solution-processed ferroelectric nylon thin film has not been demonstrated because of the strong tendency of nylon chains to form hydrogen bonds. We show the solution processing of transparent ferroelectric thin film capacitors of odd nylons. The demonstration of ferroelectricity, as well as the way to obtain thin films, makes odd nylons attractive for applications in flexible devices, soft robotics, biomedical devices, and electronic textiles.

2011 ◽  
Vol 495 ◽  
pp. 108-111 ◽  
Author(s):  
Vasiliki P. Tsikourkitoudi ◽  
Elias P. Koumoulos ◽  
Nikolaos Papadopoulos ◽  
Costas A. Charitidis

The adhesion and mechanical stability of thin film coatings on substrates is increasingly becoming a key issue in device reliability as magnetic and storage technology driven products demand smaller, thinner and more complex functional coatings. In the present study, chemical vapor deposited Co and Co3O4thin films on SiO2and Si substrates are produced, respectively. Chemical vapor deposition is the most widely used deposition technique which produces thin films well adherent to the substrate. Co and Co3O4thin films can be used in innovative applications such as magnetic sensors, data storage devices and protective layers. The produced thin films are characterized using nanoindentation technique and their nanomechanical properties (hardness and elastic modulus) are obtained. Finally, an evaluation of the reliability of each thin film (wear analysis) is performed using the hardness to elastic modulus ratio in correlation to the ratio of irreversible work to total work for a complete loading-unloading procedure.


Author(s):  
Shunyu Chang ◽  
Yanquan Geng ◽  
Yongda Yan

AbstractAs one of the most widely used nanofabrication methods, the atomic force microscopy (AFM) tip-based nanomachining technique offers important advantages, including nanoscale manipulation accuracy, low maintenance cost, and flexible experimental operation. This technique has been applied to one-, two-, and even three-dimensional nanomachining patterns on thin films made of polymers, metals, and two-dimensional materials. These structures are widely used in the fields of nanooptics, nanoelectronics, data storage, super lubrication, and so forth. Moreover, they are believed to have a wide application in other fields, and their possible industrialization may be realized in the future. In this work, the current state of the research into the use of the AFM tip-based nanomachining method in thin-film machining is presented. First, the state of the structures machined on thin films is reviewed according to the type of thin-film materials (i.e., polymers, metals, and two-dimensional materials). Second, the related applications of tip-based nanomachining to film machining are presented. Finally, the current situation of this area and its potential development direction are discussed. This review is expected to enrich the understanding of the research status of the use of the tip-based nanomachining method in thin-film machining and ultimately broaden its application.


2018 ◽  
Vol 6 (6) ◽  
pp. 1393-1398 ◽  
Author(s):  
Shengbin Nie ◽  
Ao Liu ◽  
You Meng ◽  
Byoungchul Shin ◽  
Guoxia Liu ◽  
...  

In this study, transparent p-type CuCrxOy semiconductor thin films were fabricated using spin coating and integrated as channel layers in thin-film transistors (TFTs).


2020 ◽  
Vol 2 (1) ◽  
pp. 368-376 ◽  
Author(s):  
Nan Chen ◽  
Michael R. Scimeca ◽  
Shlok J. Paul ◽  
Shihab B. Hafiz ◽  
Ze Yang ◽  
...  

A high-performance n-type thermoelectric Ag2Se thin film via cation exchange using a low-cost solution processed Cu2Se template.


1990 ◽  
Vol 199 ◽  
Author(s):  
M. Libera ◽  
T. A. Nguyen ◽  
C. Hwang

ABSTRACTA number of techniques for producing TEM cross-sections of thin films have been described in recent years as the need for improved and more-thorough microstructural study of thin-film materials has grown. We have developed a method for producing such cross-sections which involves little sophisticated equipment other than an ion mill for thinning. Following the method of Bravman and Sinclair (J. Elec. Micrs. Tech 1,53–61 (1984)), the film of interest is either deposited on or epoxied to a silicon wafer and a composite of six silicon beams (=3mm × 25mm × 0.5mm) is fabricated. Slices are cut from this composite perpendicular to the film plane, and each slice is mechanically thinned by a series of simple grinding and polishing steps to ∼ 50–100μm. Dimpling is not necessary. The specimen is mounted onto a slotted TEM grid which provides a vehicle for safe handling, and the specimen is ion milled to perforation. We have found the technique to be relatively fast, reliable, and simple. Its success hinges on minimizing the amount of direct handling required when the specimen is thin and fragile. We present a detailed recipe describing its various steps and show typical results from studies of thin films for data-storage applications.


2006 ◽  
Vol 937 ◽  
Author(s):  
Yutaka Natsume ◽  
Takashi Minakata

ABSTRACTWe have succeeded in developing a simple solution process of pentacene thin films without particular precursor materials. High crystallinity and large plate-like grains of the solution-processed thin films were observed with several analyses. The solution-processed pentacene thin-film transistors (TFTs) were also fabricated and exhibited good transfer characteristics with maximum carrier mobility above 1 cm2/Vs. The solution-processed TFTs also indicated a steep subthreshold swing and high stability of the threshold voltage against the storage in the atmosphere. The trap states and the bulk carrier density in the films were evaluated from the transfer characteristics by using the analytical model. We considered that these good properties could be attributed to the high crystallinity and the large grains of the solution-processed thin films.


Sign in / Sign up

Export Citation Format

Share Document