scholarly journals Temperature-resilient solid-state organic artificial synapses for neuromorphic computing

2020 ◽  
Vol 6 (27) ◽  
pp. eabb2958 ◽  
Author(s):  
A. Melianas ◽  
T. J. Quill ◽  
G. LeCroy ◽  
Y. Tuchman ◽  
H. v. Loo ◽  
...  

Devices with tunable resistance are highly sought after for neuromorphic computing. Conventional resistive memories, however, suffer from nonlinear and asymmetric resistance tuning and excessive write noise, degrading artificial neural network (ANN) accelerator performance. Emerging electrochemical random-access memories (ECRAMs) display write linearity, which enables substantially faster ANN training by array programing in parallel. However, state-of-the-art ECRAMs have not yet demonstrated stable and efficient operation at temperatures required for packaged electronic devices (~90°C). Here, we show that (semi)conducting polymers combined with ion gel electrolyte films enable solid-state ECRAMs with stable and nearly temperature-independent operation up to 90°C. These ECRAMs show linear resistance tuning over a >2× dynamic range, 20-nanosecond switching, submicrosecond write-read cycling, low noise, and low-voltage (±1 volt) and low-energy (~80 femtojoules per write) operation combined with excellent endurance (>109 write-read operations at 90°C). Demonstration of these high-performance ECRAMs is a fundamental step toward their implementation in hardware ANNs.

2019 ◽  
Author(s):  
Qisheng Zhang ◽  
Wenhao Li ◽  
Feng Guo ◽  
Zhenzhong Yuan ◽  
Shuaiqing Qiao ◽  
...  

Abstract. In the past few decades, with the continuous advancement of technology, seismic-electrical instruments have developed rapidly. However, complex and harsh exploration environments have put forward higher requirements and severe challenges for traditional geophysical exploration methods and instruments. Therefore, it is extremely urgent to develop new high-precision exploration instruments and data acquisition systems. In this study, a new distributed seismic-electrical hybrid acquisition station is developed using system-on-a-programmable-chip (SoPC) technology. The acquisition station hardware includes an analog board and a main control board. The analog board uses a signal conditioning circuit and a 24-bit analog-to-digital converter (ADS1271) to achieve high-precision data acquisition, while the main control board uses a low-power SoPC chip to enable high-speed stable data transmission. Moreover, the data transmission protocol for the acquisition station was designed, an improved low-voltage differential signaling data transmission technology was independently developed, and a method to enhance the precision of synchronous acquisition was studied in depth. These key technologies, which were developed for the acquisition station, were integrated into the SoPC of the main control board. Testing results indicate that the synchronization precision of the acquisition station is better than 200 ns, and the maximum low-power data transmission speed is 16 Mbps along a 55 m cable. Simultaneously, the developed acquisition station has the advantages of low noise, large dynamic range, low power consumption, etc., and it can achieve high-precision hybrid acquisition of seismic-electrical data.


2021 ◽  
Vol 16 (5) ◽  
pp. 833-837
Author(s):  
Shin Kyu Lee ◽  
Sangmo Kim ◽  
Chung Wung Bark

Ferroelectric random-access memory (FeRAM) is non-volatile, facilitates data storage via ferroelectricity, and it has attracted research attention as potential data storage means in high-performance computing applications. However, retention and fatigue problems have hampered its commercialization. Recently, the atomically controllable HfO2 FeRAM with high-density-storage capability has been developed. Although HfO2 is compatible with silicon-based fabrication technologies, its experimental realization is yet to be investigated. Thus, in this study, we have synthesized ZrO2-doped HfO2 (also referred to as Hf0.5Zr0.5O2 or HZO) with enhanced operating characteristics via a solid-state reaction and optimized ball-milling process. The HZO ceramic targets are sintered at different temperatures between 1000 °C and 1600 °C, and the influence of the sintering temperature on the HZO target properties is investigated. As observed, the HZO target sintered at 1600 °C optimum for film growth.


2014 ◽  
Vol 519-520 ◽  
pp. 1085-1088
Author(s):  
Ying Qi Qian ◽  
Chang Chun Zhang ◽  
Zhong Chao Liu ◽  
Lei Lei Liu ◽  
Yu Rong Luan ◽  
...  

Sigma-Delta (∑∆) modulators are commonly used in high-resolution analog-to-digital converters (ADCs). In this paper, a high-performance modulator targeted for ultra-high-frequency (UHF) radio-frequency identification (RFID) zero-intermediate frequency (ZIF) receivers is designed in standard 0.18μm CMOS technology. The modulator has been designed with switched-capacitor (SC) integrators employing gain-boosted operational amplifiers, voltage comparators and nonoverlapping clock generators to satisfy such requirements as high gain, low voltage and wide bandwidth. The behavioral-level modeling and circuit-level design are carried out with MATLAB/Simulink and Cadence/SpectreRF, respectively. Ultimately, the high-speed and low-power realization of a second-order single-bit modulator with an oversampling ratio (OSR) of 32 is presented. Simulation results shown that, from a 1.8V supply, operated at a sampling frequency of 64MHz, a dynamic range of 53.4dB over a signal bandwidth of 1MHz is achieved.


2016 ◽  
Vol 25 (06) ◽  
pp. 1650066 ◽  
Author(s):  
Pantre Kompitaya ◽  
Khanittha Kaewdang

A current-mode CMOS true RMS-to-DC (RMS: root-mean-square) converter with very low voltage and low power is proposed in this paper. The design techniques are based on the implicit computation and translinear principle by using CMOS transistors that operate in the weak inversion region. The circuit can operate for two-quadrant input current with wide input dynamic range (0.4–500[Formula: see text]nA) with an error of less than 1%. Furthermore, its features are very low supply voltage (0.8[Formula: see text]V), very low power consumption ([Formula: see text]0.2[Formula: see text]nW) and low circuit complexity that is suitable for integrated circuits (ICs). The proposed circuit is designed using standard 0.18[Formula: see text][Formula: see text]m CMOS technology and the HSPICE simulation results show the high performance of the circuit and confirm the validity of the proposed design technique.


2002 ◽  
Author(s):  
Αθανάσιος Πότσης

Because of its high resolution, frequency scattering properties and indifference to day/night or cloud cover, Synthetic Aperture Radar (SAR) has become into vogue in the last years. The field of SAR remote sensing has changed dramatically with the operational introduction of new high performance signal processing techniques and new operational modes, like the polarimetry in 1980’s and the interferometry in 1990’s. Additionally, technological advances in antenna design, low noise amplifiers, band-pass filters, digital receiver technology and high frequency digital sampling devises, increase the availability and the performance of airborne as well as spaceborne SAR sensors. All these technological advances result to real time SAR system operation and in most of the frequency bands of the electromagnetic spectrum. These advanced hardware components combined with the new radar techniques result to large variety of operational and research applications. In several of the new coming applications there is the need for a SAR system to penetrate vegetation and foliage. As a result of this, a new class of SAR systems, using low frequencies, has emerged. The combination of low frequency with high bandwidth allows a variety of new military as well as civilian applications. In the frame of this thesis, several hardware and software modifications made in the E-SAR P-Band system operated by DLR aiming the improvement of the collected and processed data quality is described. The basic P-Band inherent problems like the low Signal-To-Noise-Ratio (SNR), the presence of Radio Frequency Interferences (RFI) as well as the high dynamic range of the backscattered signal are addressed. A new mode of operation called “Listen Only” (LO) channel mode gave us the unique opportunity to study and analyze the special characteristics of the interfering signals and the nature of the low frequency backscattered signal. Based on this analysis new RFI suppression algorithms have been developed and the system operation parameters have been set to the correct value resulting to high quality collected data. The effect of RFI signals in fully polarimetric SAR data processing and applications are analyzed in detail. One of the principal items of this thesis is the development of a new robust sub-aperture algorithm for improved Motion Compensation (MoCo) in wide azimuth beam SAR data processing. The new algorithm is incorporated to the Extended Chirp Scaling SAR data processing algorithm. The improved MoCo algorithm results to focused images with high SNR, contrast, higher resolution and better geometric correctness. The performance and the correction accuracy of the proposed algorithms are analyzed by using mainly real data collected by the E-SAR system of DLR.


Electronics ◽  
2021 ◽  
Vol 10 (16) ◽  
pp. 1936
Author(s):  
Luis Miguel Carvalho Freitas ◽  
Fernando Morgado-Dias

Modern CMOS imaging devices are present everywhere, in the form of line, area and depth scanners. These image devices can be used in the automotive field, in industrial applications, in the consumer’s market, and in various medical and scientific areas. Particularly in industrial and scientific applications, the low-light noise performance or the high dynamic-range features are often the cases of interest, combined with low power dissipation and high frame rates. In this sense, the noise floor performance and the power consumption are the focus of this work, given that both are interlinked and play a direct role in the remaining sensor features. It is known that thermal and flicker noise sources are the main contributors to the degradation of the sensor performance, concerning the sensor output image noise. This paper presents an indirect way to reduce both the thermal and the flicker noise contributions by using thin-oxide low voltage supply column readout circuits and fast 3rd order incremental sigma-delta converters with noise shaping capabilities (to provide low noise output digital samples—74 μVrms; 0.7 e−rms; at 105 μV/e−), and thus performing correlated double sampling in a short time (19 μs), while dissipating significant low power (346 μW). Throughout the extensive parametric transistor-level simulations, the readout path produced 1.2% non-linearity, with a competitive saturation capacity (6.5 ke−) pixel. In addition, this paper addresses the readout parallelism as the main point of interest, decoupling resolution from the image noise and the frame rate, at virtually any array resolution. The design and simulations were performed with Virtuoso 6.17 tools (Cadence Design Systems, San Jose, CA, USA) using Spectre models from TS18IS Image Sensor 0.18 µm Process Development Kit (Tower Jazz Semiconductor, Migdal Haemek, Israel).


2021 ◽  
Vol 7 (29) ◽  
pp. eabh0648
Author(s):  
Xing Mou ◽  
Jianshi Tang ◽  
Yingjie Lyu ◽  
Qingtian Zhang ◽  
Siyao Yang ◽  
...  

Inspired by the human brain, nonvolatile memories (NVMs)–based neuromorphic computing emerges as a promising paradigm to build power-efficient computing hardware for artificial intelligence. However, existing NVMs still suffer from physically imperfect device characteristics. In this work, a topotactic phase transition random-access memory (TPT-RAM) with a unique diffusive nonvolatile dual mode based on SrCoOx is demonstrated. The reversible phase transition of SrCoOx is well controlled by oxygen ion migrations along the highly ordered oxygen vacancy channels, enabling reproducible analog switching characteristics with reduced variability. Combining density functional theory and kinetic Monte Carlo simulations, the orientation-dependent switching mechanism of TPT-RAM is investigated synergistically. Furthermore, the dual-mode TPT-RAM is used to mimic the selective stabilization of developing synapses and implement neural network pruning, reducing ~84.2% of redundant synapses while improving the image classification accuracy to 99%. Our work points out a new direction to design bioplausible memristive synapses for neuromorphic computing.


2019 ◽  
Vol 8 (2) ◽  
pp. 241-249 ◽  
Author(s):  
Qisheng Zhang ◽  
Wenhao Li ◽  
Feng Guo ◽  
Zhenzhong Yuan ◽  
Shuaiqing Qiao ◽  
...  

Abstract. In the past few decades, with the continuous advancement of technology, seismic and electrical instruments have developed rapidly. However, complex and harsh exploration environments led to higher requirements and severe challenges for traditional geophysical exploration methods and instruments. Therefore, it is extremely urgent to develop new high-precision exploration instruments and data acquisition systems. In this study, a new distributed seismic and electrical hybrid acquisition station is developed using system-on-a-programmable-chip (SoPC) technology. The acquisition station hardware includes an analog board and a main control board. The analog board uses a signal conditioning circuit and a 24-bit analog-to-digital converter (ADS1271) to achieve high-precision data acquisition, while the main control board uses a low-power SoPC to enable high-speed stable data transmission. We designed the data transmission protocol for the acquisition station and developed independently an improved low-voltage differential signaling data transmission technology. What's more, a method to enhance the precision of synchronous acquisition was studied in depth. These key technologies, which were developed for the acquisition station, were integrated into the SoPC of the main control board. Test results indicate that the synchronization precision of the acquisition station is better than 200 ns, and the maximum low-power data transmission speed is 16 Mbps along a 55 m cable. The developed acquisition station has the advantages of low noise, large dynamic range, low power consumption, etc., and it can achieve high-precision hybrid acquisition of seismic and electrical data.


Sign in / Sign up

Export Citation Format

Share Document