scholarly journals Mitovesicles are a novel population of extracellular vesicles of mitochondrial origin altered in Down syndrome

2021 ◽  
Vol 7 (7) ◽  
pp. eabe5085
Author(s):  
Pasquale D’Acunzo ◽  
Rocío Pérez-González ◽  
Yohan Kim ◽  
Tal Hargash ◽  
Chelsea Miller ◽  
...  

Mitochondrial dysfunction is an established hallmark of aging and neurodegenerative disorders such as Down syndrome (DS) and Alzheimer’s disease (AD). Using a high-resolution density gradient separation of extracellular vesicles (EVs) isolated from murine and human DS and diploid control brains, we identify and characterize a previously unknown population of double-membraned EVs containing multiple mitochondrial proteins distinct from previously described EV subtypes, including microvesicles and exosomes. We term these newly identified mitochondria-derived EVs “mitovesicles.” We demonstrate that brain-derived mitovesicles contain a specific subset of mitochondrial constituents and that their levels and cargo are altered during pathophysiological processes where mitochondrial dysfunction occurs, including in DS. The development of a method for the selective isolation of mitovesicles paves the way for the characterization in vivo of biological processes connecting EV biology and mitochondria dynamics and for innovative therapeutic and diagnostic strategies.

1991 ◽  
Vol 129 (2) ◽  
pp. 283-289 ◽  
Author(s):  
E. O. Wango ◽  
R. B. Heap ◽  
F. B. P. Wooding

ABSTRACT Enzymic dispersion and density gradient separation were used for the isolation of enriched populations (60–90%) of cells from the corpus luteum, placenta and peripheral blood of pregnant sheep and goats. Analysis of the steroids produced from radioactive pregnenolone demonstrated that placental binucleate cells can produce progesterone and 5β-pregnanediol whereas white blood cells were relatively inactive. Thus, sheep binucleate cells converted pregnenolone predominantly to progesterone as did sheep luteal cells. However, goat binucleate cells produced 5β-pregnanediol as the major metabolite, which is consistent with its production in vivo during pregnancy. Production of progesterone (sheep) or 5β-pregnanediol (goat) by binucleate cells was shown to be proportional to the number and viability of the cells. In contrast with the binucleate cells there was no evidence that trophectodermal uninucleate cells play a significant role in placental progesterone or 5β-pregnanediol synthesis in either species. Journal of Endocrinology (1991) 129, 283–289


Author(s):  
James R. Gaylor ◽  
Fredda Schafer ◽  
Robert E. Nordquist

Several theories on the origin of the melanosome exist. These include the Golgi origin theory, in which a tyrosinase-rich protein is "packaged" by the Golgi apparatus, thus forming the early form of the melanosome. A second theory postulates a mitochondrial origin of melanosomes. Its author contends that the melanosome is a modified mitochondria which acquires melanin during its development. A third theory states that a pre-melanosome is formed in the smooth or rough endoplasmic reticulum. Protein aggregation is suggested by one author as a possible source of the melanosome. This fourth theory postulates that the melanosome originates when the protein products of several genetic loci aggregate in the cytoplasm of the melanocyte. It is this protein matrix on which the melanin is deposited. It was with these theories in mind that this project was undertaken.


2010 ◽  
Vol 37 (2) ◽  
pp. 154-160 ◽  
Author(s):  
Ling-Ling LIU ◽  
Bai-Yang SHENG ◽  
Kai GONG ◽  
Nan-Ming ZHAO ◽  
Xiu-Fang ZHANG ◽  
...  

Author(s):  
Mohammad Ghiasloo ◽  
Laura De Wilde ◽  
Kashika Singh ◽  
Patrick Tonnard ◽  
Alexis Verpaele ◽  
...  

Abstract Background Recent evidence confirms that mesenchymal stem cells (MSCs) facilitate angiogenesis mainly through paracrine function. Extracellular vesicles (EVs) are regarded as key components of the cell secretome, possessing functional properties of their source cells. Subsequently, MSC-EVs have emerged as a novel cell-free approach to improve fat graft retention rate. Objectives To provide a systematic review of all studies reporting the use of MSC-EVs to improve graft retention rate. Methods A systematic search was undertaken using the Embase, PubMed and the Cochrane Central Register of Controlled Trials databases. Outcome measures included donor/receptor organism of the fat graft, study model, intervention groups, evaluation intervals, EV research data, in vitro and in vivo results. Results Of the total 1717 articles, 62 full-texts were screened. Seven studies reporting on 294mice were included. Overall, EV treated groups showed higher graft retention rates compared to untreated groups. Notably, retention rate was similar following EV- and MSC-treatment. In addition to reduced inflammation, graft enrichment with EVs resulted in early revascularization and better graft integrity. Interestingly, hypoxic preconditioning of MSCs improved their beneficial paracrine effects and led to a more proangiogenic EV population, as observed by both in vitro and in vivo results. Conclusions MSC-EVs appear to offer an interesting cell-free alternative to improve fat graft survival. While their clinical relevance remains to be determined, it is clear that not the cells, but their secretome is essential for graft survival. Thus, a paradigm shift from cell-assisted lipotransfer towards ‘secretome-assisted lipotransfer’ is well on its way.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Jing Zhou ◽  
Yang Lin ◽  
Xiuhua Kang ◽  
Zhicheng Liu ◽  
Wei Zhang ◽  
...  

Abstract Background Previous reports have identified that human bone marrow mesenchymal stem cell-derived extracellular vesicles (BMSC-EVs) with their cargo microRNAs (miRNAs) are a promising therapeutic approach for the treatment of idiopathic pulmonary fibrosis (IPF). Therefore, we explored whether delivery of microRNA-186 (miR-186), a downregulated miRNA in IPF, by BMSC EVs could interfere with the progression of IPF in a murine model. Methods In a co-culture system, we assessed whether BMSC-EVs modulated the activation of fibroblasts. We established a mouse model of PF to evaluate the in vivo therapeutic effects of BMSC-EVs and determined miR-186 expression in BMSC-EVs by polymerase chain reaction. Using a loss-of-function approach, we examined how miR-186 delivered by BMSC-EVs affected fibroblasts. The putative relationship between miR-186 and SRY-related HMG box transcription factor 4 (SOX4) was tested using luciferase assay. Next, we investigated whether EV-miR-186 affected fibroblast activation and PF by targeting SOX4 and its downstream gene, Dickkopf-1 (DKK1). Results BMSC-EVs suppressed lung fibroblast activation and delayed IPF progression in mice. miR-186 was downregulated in IPF but enriched in the BMSC-EVs. miR-186 delivered by BMSC-EVs could suppress fibroblast activation. Furthermore, miR-186 reduced the expression of SOX4, a target gene of miR-186, and hence suppressed the expression of DKK1. Finally, EV-delivered miR-186 impaired fibroblast activation and alleviated PF via downregulation of SOX4 and DKK1. Conclusion In conclusion, miR-186 delivered by BMSC-EVs suppressed SOX4 and DKK1 expression, thereby blocking fibroblast activation and ameliorating IPF, thus presenting a novel therapeutic target for IPF.


Membranes ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 411
Author(s):  
Nader Kameli ◽  
Anya Dragojlovic-Kerkache ◽  
Paul Savelkoul ◽  
Frank R. Stassen

In recent years, plant-derived extracellular vesicles (PDEVs) have gained the interest of many experts in fields such as microbiology and immunology, and research in this field has exponentially increased. These nano-sized particles have provided researchers with a number of interesting findings, making their application in human health and disease very promising. Both in vitro and in vivo experiments have shown that PDEVs can exhibit a multitude of effects, suggesting that these vesicles may have many potential future applications, including therapeutics and nano-delivery of compounds. While the preliminary results are promising, there are still some challenges to face, such as a lack of protocol standardization, as well as knowledge gaps that need to be filled. This review aims to discuss various aspects of PDEV knowledge, including their preliminary findings, challenges, and future uses, giving insight into the complexity of conducting research in this field.


Sign in / Sign up

Export Citation Format

Share Document