Sucrose consumption early in life fails to modify the appetite of adult rats for sweet foods

Science ◽  
1979 ◽  
Vol 205 (4403) ◽  
pp. 321-322 ◽  
Author(s):  
JJ Wurtman ◽  
RJ Wurtman

Male rats consumed a diet containing 0, 12, or 48 percent sucrose on days 16 to 30 of life. Thereafter, they had simultaneous access to all three diets until day 63. No relationship was detected between sucrose consumption early in life and subsequent preference for sucrose. The onset of puberty was associated with a decreased appetite for sucrose among animals of both sexes.

1973 ◽  
Vol 74 (1) ◽  
pp. 88-104 ◽  
Author(s):  
T. Jolín ◽  
M. J. Tarin ◽  
M. D. Garcia

ABSTRACT Male and female rats of varying ages were placad on a low iodine diet (LID) plus KClO4 or 6-propyl-2-thiouracil (PTU) or on the same diet supplemented with I (control rats). Goitrogenesis was also induced with LID plus PTU in gonadectomized animals of both sexes. The weight of the control and goitrogen treated animals, and the weight and iodine content of their thyroids were determined, as well as the plasma PBI, TSH, insulin and glucose levels. The pituitary GH-like protein content was assessed by disc electrophoresis on polyacrylamide gels. If goitrogenesis was induced in young rats of both sexes starting with rats of the same age, body weight (B.W.) and pituitary growth hormone (GH) content, it was found that both the males and females developed goitres of the same size. On the contrary, when goitrogenesis was induced in adult animals, it was found that male rats, that had larger B.W. and pituitary GH content than age-paired females, developed larger goitres. However, both male and female rats were in a hypothyroid condition of comparable degree as judged by the thyroidal iodine content and the plasma PBI and TSH levels. When all the data on the PTU or KClO4-treated male and female rats of varying age and B.W. were considered together, it was observed that the weights of the thyroids increased proportionally to B.W. However, a difference in the slope of the regression of the thyroid weight over B.W. was found between male and female rats, due to the fact that adult male rats develop larger goitres than female animals. In addition, in the male rats treated with PTU, gonadectomy decreased the B.W., pituitary content of GH-like protein and, concomitantly, the size of the goitre decreased; an opposite effect was induced by ovariectomy on the female animals. However, when goitrogenesis was induced in weight-paired adult rats of both sexes, the male animals still developed larger goitres than the females. Among all the parameters studied here, the only ones which appeared to bear a consistent relationship with the size of the goitres in rats of different sexes, treated with a given goitrogen, were the rate of body growth and the amount of a pituitary GH-like protein found before the onset of the goitrogen treatment. Moreover, though the pituitary content of the GH-like protein decreased as a consequence of goitrogen treatment, it was still somewhat higher in male that in female animals. The present results suggest that GH may somehow be involved in the mechanism by which male and female rats on goitrogens develop goitres of different sizes, despite equally high plasma TSH levels.


Hypertension ◽  
2012 ◽  
Vol 60 (suppl_1) ◽  
Author(s):  
Analia S Loria ◽  
Michael W Brands ◽  
David M Pollock ◽  
Jennifer S Pollock

We previously reported that maternal separation (MS), a model of early life stress, does not modify baseline blood pressure in adult rats, but increases sensitivity to hypertensive stimuli. Under baseline conditions, adult male rats exposed to MS have significantly reduced glomerular filtration rate (GFR). Acute phenylephrine-induced reductions in renal blood flow is significantly attenuated in rats exposed to MS compared to control rats. Furthermore, norephinephrine (NE) content was increased in renal cortex of MS rats compared to control rats (p<0.05). These data indicate that MS induces increased renal sympathetic outflow. Thus, we hypothesized that renal denervation will normalize GFR in rats exposed to MS. Male WKY rat pups were separated from their mothers for 3 hrs/day during the morning hours from day 2 to 14 of life. Male non-separated littermates served as control rats. Experiments were performed in 300-320 g adult rats. Denervation (DnX) was performed mechanically stripping all visible renal nerves followed by topical phenol (10%) on the renal artery. Control-sham, MS-sham, control-DnX, and MS-DnX rats were instrumented with catheters in the femoral vein and abdominal aorta. Rats were placed in metabolic cages, connected to swivels, and allowed to recover for 4-5 days. Sodium intake was clamped at 2.8 mEq/day in both groups by combining sodium deficient diet and 24 hr/day 0.9% iv saline infusion (20 ml/day). GFR was determined by plasma clearance of [125I]iothalamate in the conscious state. During baseline conditions, MAP was not different between control-sham and MS-sham rats (99±4 vs 97±2 mmHg, respectively). MAP was reduced in both control-DnX and MS-DnX rats (91±2 mmHg and 83±3 mmHg, p<0.05, respectively) compared with the respective sham group. The reduction in MAP tended to be greater in MS than in control rats (-9±1 and -14±2 mmHg, p=0.074). DnX did not modify GFR in control rats (sham: 3.1±0.1 ml/min vs DnX: 3.5±0.4 ml/min). However, DnX significantly increased GFR in rats exposed to MS (sham: 2.4±0.2 ml/min vs DnX: 3.8±0.4 ml/min, p<0.05). These data support our hypothesis that MS induces increased renal sympathetic tone to reduce GFR in MS male rats, and may contribute to the exacerbated response to hypertensive stimuli observed in MS rats.


1991 ◽  
Vol 260 (2) ◽  
pp. E220-E225 ◽  
Author(s):  
J. Fox

Plasma immunoreactive parathyroid hormone (irPTH) levels increase with aging. This study determined 1) whether NH2-terminal irPTH secretory responses to induced hypocalcemia differ between adult (6-mo-old) and aged (24- to 26-mo-old) male rats and 2) whether a higher set point for irPTH release by Ca is responsible for the elevated irPTH levels with aging. Basal irPTH levels were 68% higher and 1,25-dihydroxyvitamin D3 levels were 44% lower in aged rats. An acutely induced, constant hypocalcemic stimulus [0.32 mM decrement in ionized Ca (Ca2+) for 2 h] was developed in catheterized conscious adult and aged rats by ethylene glycol-bis(beta-aminoethyl ether)-N,N,N',N'-tetraacetic acid (EGTA) infusion using the Ca clamp technique. The initial irPTH secretory response to acute hypocalcemia (5-10 min) was reduced in aged rats (1.9- vs. 3.1-fold increase), suggesting reduced hormone stores. However, higher sustained irPTH levels (30 min to 2 h) were maintained in aged rats, indicating increased irPTH synthesis and release. The EGTA infusion rate necessary to maintain constant hypocalcemia was less in aged rats, suggesting skeletal resistance to PTH. Slow EGTA and Ca infusions were used to determine irPTH secretion at plasma Ca2+ levels from 0.7 to 1.5 mM. In aged rats, irPTH levels were higher at all Ca2+ concentrations, but the set point for irPTH release by Ca2+ was the same as in adult rats. Thus the elevated irPTH secretion in aged rats is not caused by a change in the set point for irPTH release but does result in decreased irPTH stores.


2021 ◽  
Author(s):  
Kimberly L. P. Long ◽  
Linda L. Chao ◽  
Yurika Kazama ◽  
Anjile An ◽  
Kelsey Y. Hu ◽  
...  

AbstractBackgroundIndividual reactions to traumatic stress vary dramatically, yet the biological basis of this variation remains poorly understood. Recent studies have demonstrated surprising plasticity of oligodendrocytes and myelin in the adult brain, providing a potential mechanism by which aberrant structural and functional changes arise in the brain following trauma exposure.MethodsWe tested the hypothesis that gray matter myelin contributes to traumatic stress-induced behavioral variation. We exposed adult rats to a single, severe stressor and used a multimodal approach to characterize avoidance, startle, and fear-learning behavior. We quantified oligodendrocyte and myelin content in multiple brain areas and compared these measures to behavioral metrics. We then induced overexpression of the oligodendrogenic transcription factor Olig1 in the adult rat dentate gyrus (DG) to test the potential, causal role of oligodendrogenesis in behavioral variation. Lastly, T1-/T2-weighted estimates of myelin were compared to trauma-induced symptom profiles in humans.ResultsOligodendrocytes and myelin in the DG of the hippocampus positively correlated with stress-induced avoidance behaviors in male rats. In contrast, myelin levels in the amygdala positively correlated with contextual fear learning. Olig1 overexpression increased place avoidance compared to control virus animals, indicating that increased oligodendrocyte drive in the DG is sufficient to induce an avoidance behavioral phenotype. Finally, variation in myelin correlated with trauma-induced symptom profiles in humans in a region-specific manner that mirrored our rodent findings.ConclusionsThese results demonstrate a species-independent relationship between region-specific, gray matter oligodendrocytes and myelin and differential behavioral phenotypes following traumatic stress exposure. This study provides a novel biological framework for understanding the mechanisms that underlie individual variance in sensitivity to traumatic stress.


Author(s):  
O. Tkachenko ◽  
V. Kovalenko

Comparative study of embryo-fetal death in females fertilized by males with metabolic syndrome, induced in adult or juvenile age has shown that the offspring of adult rats did not have significant abnormalities in embrio- and fetogenesis. At the same time it has been revealed 4% postimplantation death of offspring in male rats with metabolic syndrome induced in the juvenile age. The pre-implantation loss in this group was 6 folds higher than in control. Accordingly, the total mortality of the offspring rose 2.4 times in comparison with control.


2022 ◽  
Author(s):  
Domênika Rubert Rossato ◽  
Higor Zuchetto Rosa ◽  
Jéssica Leandra Oliveira Rosa ◽  
Laura Hautrive Milanesi ◽  
Vinícia Garzella Metz ◽  
...  

Abstract Amphetamine (AMPH) is a psychostimulant drug frequently related to addiction, which is characterized by functional and molecular changes in the brain reward system, favoring relapse development and pharmacotherapies have shown low effectiveness. Considering the beneficial influences of tactile stimulation (TS) in different diseases that affect the central nervous system (CNS), here we evaluated if TS applied in adult rats could prevent or minimize the AMPH-relapse behavior also accessing molecular neuroadaptations in the Nucleus accumbens (NAc). Following AMPH conditioning in the conditioned place preference (CPP) paradigm, male rats were submitted to TS (15-min session, 3 times a day, for 8 days) during the drug abstinence period, which were re-exposed to the drug in the CPP paradigm for additional 3 days for relapse observation and molecular assessment. Our findings showed that besides AMPH relapse; TS prevented the dopamine transporter (DAT), dopamine 1 receptor (D1R), tyrosine hydroxylase (TH), mu opioid receptor (MOR) increase and AMPH-induced delta FosB (ΔFosB). Based on these outcomes, we propose TS as a useful tool to treat psychostimulant addiction, which subsequent to clinical studies; it could be included in detoxification programs together with pharmacotherapies and psychological treatments already conventionally established.


Author(s):  
Zachary R Hettinger ◽  
Kyoko Hamagata ◽  
Amy L Confides ◽  
Marcus M Lawrence ◽  
Benjamin F Miller ◽  
...  

Abstract The inability to fully recover lost muscle mass following periods of disuse atrophy predisposes older adults to lost independence and poor quality of life. We have previously shown that mechanotherapy at a moderate load (4.5 N) enhances muscle mass recovery following atrophy in adult, but not older adult rats. We propose that elevated transverse stiffness in aged muscle inhibits the growth response to mechanotherapy and hypothesize that a higher load (7.6 N) will overcome this resistance to mechanical stimuli. F344/BN adult and older adult male rats underwent 14-days of hindlimb suspension, followed by 7-days of recovery with (RE+M) or without (RE) mechanotherapy at 7.6 N on gastrocnemius muscle. The 7.6 N load was determined by measuring transverse passive stiffness and linearly scaling up from 4.5 N. No differences in protein turnover or mean fiber cross sectional area were observed between RE and RE+M for older adult rats or adult rats at 7.6 N. However, there was a higher number of small muscle fibers present in older adult, but not adult rats, which was explained by a 16-fold increase in the frequency of small fibers expressing embryonic myosin heavy chain. Elevated central nucleation, satellite cell abundance, and dystrophin -/laminin + fibers were present in older adult rats only following 7.6 N, while 4.5 N did not induce damage at either age. We conclude that age is an important variable when considering load used during mechanotherapy and age-related transverse stiffness may predispose older adults to damage during the recovery period following disuse atrophy.


1963 ◽  
Vol 41 (1) ◽  
pp. 917-929 ◽  
Author(s):  
D. G. R. Blair ◽  
W. Yakimets ◽  
J. Tuba

Intestinal sucrase activity of the rat varies with the age, but not the sex, of the animal. Sucrase activity of rats 23 days of age was approximately two-thirds that of adults.Sucrase activity of adult rats was significantly decreased by several days of fasting. The decrease was rapid during the first 2 to 4 days of the fast, but became negligible thereafter.Diets containing large (70%) amounts of sucrose, galactose, melizitose, or α-methyl-D-glucoside produced highly significant increases in intestinal sucrase levels (compared with a carbohydrate-free, high-casein control diet) when fed ad libitum for 24 hours to adult male rats previously fasted for 3 days. Similar diets containing fructose, fructose plus glucose in equimolar amounts, or maltose significantly increased sucrase activity, but diets containing glucose, mannose, xylose, or lactose were not stimulatory. A 70% raffinose diet significantly decreased sucrase activity. Normal male rats which were fed the 70% sucrose diet for 4 weeks had sucrase activities similar to those of controls fed Purina fox checkers, but animals fed the carbohydrate-free, high-casein diet for 1 day or longer had sucrase activities significantly lower than those of controls. The significance of these observations in regard to enzyme "adaptation" is discussed.


1966 ◽  
Vol 44 (1) ◽  
pp. 95-101 ◽  
Author(s):  
J. R. Beaton ◽  
A. J. Szlavko ◽  
J. A. F. Stevenson

The effect of various factors on excretion of a lipid-mobilizing activity in FMS IA (anorexigenic) and in FMS IB (fat-mobilizing) by the fasting rat has been investigated. During fasting, the greatest excretion of such activity in FMS IA and FMS IB occurred in the first 24 hours and diminished thereafter up to 72 hours; and the specific activity of FMS IB was greatest in the first 24 hours whereas that of FMS IA was constant throughout. The hypothalamicobese rat excretes FMS IA and FMS IB in greater than normal amounts. The alloxan-diabetic rat excretes less total activity of FMS IA and IB than do control animals. Young male rats excrete greater amounts of FMS IB, but not of FMS IA, than do adult rats, the greatest excretion per 100 g body weight being observed at approximately 37 days of age. At 27 days of age (prepuberty), male rats excreted a greater total activity of FMS IB but not of FMS IA than did female rats. At 90 days of age (post-puberty), there was no apparent sex difference in the amount of total activity of FMS IB excreted per rat, but when expressed per 100 g body weight, females excreted more FMS IB than did males.


Endocrinology ◽  
2016 ◽  
Vol 157 (8) ◽  
pp. 2972-2977 ◽  
Author(s):  
Bryan A. Jones ◽  
Lydia S. Wagner ◽  
Neil V. Watson

The industrial plasticizer bisphenol A (BPA) is a ubiquitous endocrine disruptor to which the general human population is routinely exposed. Although BPA is well known as an estrogenic mimic, there have been some suggestions that this compound may also alter activity at the androgen receptor. To determine whether BPA does have antiandrogenic properties, we evaluated BPA effects in the spinal nucleus of the bulbocavernosus and dorsolateral nucleus, sexually dimorphic groups of motor neurons in the lumbar spinal cord that are critically dependent on androgens for survival and maintenance, as well as the monomorphic retrodorsolateral nucleus. In experiment 1, we administered varying concentrations of BPA to juvenile rats pre- and postnatally and examined both the number and size of motor neurons in adulthood. In experiment 2, different doses of BPA were given to adult rats for 28 days, after which the soma size of motor neurons were measured. Although no effect of BPA on neural survival or soma size was noted after perinatal BPA exposure, BPA exposure did result in a decrease in soma size in all motor neuron pools after chronic exposure in adulthood. These findings are discussed with regard to putative antiandrogenic effects of BPA; we argue that BPA is not antiandrogenic but is acting through nonandrogen receptor-dependent mechanisms.


Sign in / Sign up

Export Citation Format

Share Document