Dynamic palmitoylation controls the microdomain localization of the DKK1 receptors CKAP4 and LRP6

2019 ◽  
Vol 12 (608) ◽  
pp. eaat9519 ◽  
Author(s):  
Ryota Sada ◽  
Hirokazu Kimura ◽  
Yuko Fukata ◽  
Masaki Fukata ◽  
Hideki Yamamoto ◽  
...  

Dickkopf1 (DKK1) was originally identified as an antagonist of Wnt signaling that binds to and induces the clathrin-mediated endocytosis of the Wnt coreceptors low-density lipoprotein receptor–related proteins 5 and 6 (LRP5/6). DKK1 also binds to cytoskeleton-associated protein 4 (CKAP4), which was originally identified as an endoplasmic reticulum (ER) protein but also functions at the plasma membrane as a receptor for various ligands. The DKK1-CKAP4 pathway is activated in several human cancers and promotes cell proliferation by activating signaling through the kinases PI3K and AKT. We found that both CKAP4 and LRP6 primarily localized to detergent-resistant membrane (DRM) fractions of the plasma membrane in a palmitoylation-dependent manner and that palmitoylation of CKAP4 was required for it to promote cell proliferation. DKK1 induced the depalmitoylation of both CKAP4 and LRP6 by acylprotein thioesterases (APTs), resulting in their translocation to the non-DRM fractions. Moreover, DKK1-dependent depalmitoylation of both receptors required activation of the PI3K-AKT pathway. DKK1 simultaneously bound CKAP4 and LRP6, resulting in the formation of a ternary complex. LRP5/6 knockdown decreased DKK1-dependent AKT activation and cancer cell proliferation through CKAP4, whereas CKAP4 knockdown did not affect DKK1-dependent inhibition of Wnt signaling through LRP5/6. These results indicate that the palmitoylation states of CKAP4 and LRP6 play important roles in their signaling and that LRP5/6 enhance DKK1-CKAP4 signaling.

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Jie Qu ◽  
Sarah Fourman ◽  
Maureen Fitzgerald ◽  
Min Liu ◽  
Supna Nair ◽  
...  

AbstractApolipoprotein A4 (APOA4) is one of the most abundant and versatile apolipoproteins facilitating lipid transport and metabolism. APOA4 is synthesized in the small intestine, packaged onto chylomicrons, secreted into intestinal lymph and transported via circulation to several tissues, including adipose. Since its discovery nearly 4 decades ago, to date, only platelet integrin αIIbβ3 has been identified as APOA4 receptor in the plasma. Using co-immunoprecipitation coupled with mass spectrometry, we probed the APOA4 interactome in mouse gonadal fat tissue, where ApoA4 gene is not transcribed but APOA4 protein is abundant. We demonstrate that lipoprotein receptor-related protein 1 (LRP1) is the cognate receptor for APOA4 in adipose tissue. LRP1 colocalized with APOA4 in adipocytes; it interacted with APOA4 under fasting condition and their interaction was enhanced during lipid feeding concomitant with increased APOA4 levels in plasma. In 3T3-L1 mature adipocytes, APOA4 promoted glucose uptake both in absence and presence of insulin in a dose-dependent manner. Knockdown of LRP1 abrogated APOA4-induced glucose uptake as well as activation of phosphatidylinositol 3 kinase (PI3K)-mediated protein kinase B (AKT). Taken together, we identified LRP1 as a novel receptor for APOA4 in promoting glucose uptake. Considering both APOA4 and LRP1 are multifunctional players in lipid and glucose metabolism, our finding opens up a door to better understand the molecular mechanisms along APOA4-LRP1 axis, whose dysregulation leads to obesity, cardiovascular disease, and diabetes.


1998 ◽  
Vol 336 (2) ◽  
pp. 381-386 ◽  
Author(s):  
Lothar GORETZKI ◽  
Barbara M. MUELLER

The low-density-lipoprotein-receptor-related protein (LRP) binds and internalizes numerous ligands, including lipoproteins, proteinase–inhibitor complexes and others. We have shown previously that LRP-mediated ligand internalization is dependent on cAMP-dependent protein kinase (PKA) activity. Here, we investigated whether ligation of LRP increases the intracellular cAMP level and PKA activity via a stimulatory GTP-binding protein. Treatment of LRP-expressing cell lines with the LRP ligands lactoferrin or urokinase-type plasminogen activator caused a significant elevation in cAMP and stimulated PKA activity in a dose-dependent manner. Addition of the 39 kDa receptor-associated protein (RAP), an antagonist for ligand interactions with LRP, blocked the lactoferrin-induced increase in PKA activity, demonstrating a requirement for ligand binding to LRP. Incubation of cell membrane fractions with lactoferrin increased GTPase activity in a time- and dose-dependent manner, and treatment with LRP ligands suppressed cholera-toxin-mediated ADP-ribosylation of the Gsα subunit of a heterotrimeric G-protein. Affinity precipitation of LRP with RAP resulted in co-precipitation of two isoforms of Gsα from detergent extracts. We thus conclude that LRP is a signalling receptor that associates directly with a stimulatory heterotrimeric G-protein and activates a downstream PKA-dependent pathway.


2018 ◽  
Vol 2018 ◽  
pp. 1-15 ◽  
Author(s):  
Dianaly T. Au ◽  
Mary Migliorini ◽  
Dudley K. Strickland ◽  
Selen C. Muratoglu

Hepatic inflammation is associated with the development of insulin resistance, which can perpetuate the disease state and may increase the risk of metabolic syndrome and diabetes. Despite recent advances, mechanisms linking hepatic inflammation and insulin resistance are still unclear. The low-density lipoprotein receptor-related protein 1 (LRP1) is a large endocytic and signaling receptor that is highly expressed in macrophages, adipocytes, hepatocytes, and vascular smooth muscle cells. To investigate the potential role of macrophage LRP1 in hepatic inflammation and insulin resistance, we conducted experiments using macrophage-specific LRP1-deficient mice (macLRP1−/−) generated on a low-density lipoprotein receptor knockout (LDLR−/−) background and fed a Western diet. LDLR−/−; macLRP1−/− mice gained less body weight and had improved glucose tolerance compared to LDLR−/− mice. Livers from LDLR−/−; macLRP1−/− mice displayed lower levels of gene expression for several inflammatory cytokines, including Ccl3, Ccl4, Ccl8, Ccr1, Ccr2, Cxcl9, and Tnf, and reduced phosphorylation of GSK3α and p38 MAPK proteins. Furthermore, LRP1-deficient peritoneal macrophages displayed altered cholesterol metabolism. Finally, circulating levels of sFRP-5, a potent anti-inflammatory adipokine that functions as a decoy receptor for Wnt5a, were elevated in LDLR−/−; macLRP1−/− mice. Surface plasmon resonance experiments revealed that sFRP-5 is a novel high affinity ligand for LRP1, revealing that LRP1 regulates levels of this inhibitor of Wnt5a-mediated signaling. Collectively, our results suggest that LRP1 expression in macrophages promotes hepatic inflammation and the development of glucose intolerance and insulin resistance by modulating Wnt signaling.


1998 ◽  
Vol 72 (12) ◽  
pp. 10246-10250 ◽  
Author(s):  
Thomas C. Marlovits ◽  
Christina Abrahamsberg ◽  
Dieter Blaas

ABSTRACT The large family of human rhinoviruses, the main causative agents of the common cold, is divided into the major and the minor group based on receptor specificity. Major group viruses attach to intercellular adhesion molecule 1 (ICAM-1), a member of the immunoglobulin superfamily, whereas minor group viruses use low-density lipoprotein receptors (LDLR) for cell entry. During early attempts aimed at isolating the minor group receptor, we discovered that a protein with virus binding activity was released from HeLa cells upon incubation with buffer at 37°C (F. Hofer, B. Berger, M. Gruenberger, H. Machat, R. Dernick, U. Tessmer, E. Kuechler, and D. Blaas, J. Gen. Virol. 73:627–632, 1992). In light of the recent discovery of several new members of the LDLR family, we reinvestigated the nature of this protein and present evidence for its being derived from the human very-low density lipoprotein receptor (VLDLR). A soluble VLDLR fragment encompassing the eight complement type repeats and representing the N-terminal part of the receptor was then expressed in the baculovirus system; both the shed protein and the recombinant soluble VLDLR bind minor group viruses and inhibit viral infection of HeLa cells in a concentration-dependent manner.


Molecules ◽  
2020 ◽  
Vol 25 (19) ◽  
pp. 4505
Author(s):  
Hilde Sundvold

An increased understanding of low-density lipoprotein receptor (LDLR) and its regulation may facilitate drug development for the treatment of hypercholesterolemia. Triciribine (TCN), which is a highly selective AKT inhibitor, increases the stability of LDLR mRNA downstream of extracellular signal-regulated kinase (ERK) in human hepatoma cells (HepG2). Here, a candidate approach was used in order to determine whether the RNA-binding proteins (RBPs) ZFP36 ring finger protein like 1 (ZFP36L1) and Hu antigen R (HuR) play a role in TCN-mediated stabilization of LDLR mRNA. The depletion of HuR led to a reduction of LDLR mRNA stability, an event that was more pronounced in TCN-treated cells. TCN was found to induce the translocation of nuclear HuR to cytoplasm in an ERK-dependent manner. ZFP36L1 depletion increased the stability of LDLR mRNA consistent with its destabilizing role. However, in contrast to HuR, TCN had no effect on LDLR mRNA turnover in ZFP36L1-depleted cells. TCN induced the phosphorylation of ZFP36L1 in an ERK/RSK-dependent manner and promoted its dissociation from the CCR4-NOT complex. In sum, these data suggest that TCN utilizes ERK signaling to increase the activity of HuR and inhibit ZFP36L1 to stabilize LDLR mRNA in HepG2 cells.


Blood ◽  
1998 ◽  
Vol 92 (9) ◽  
pp. 3277-3285 ◽  
Author(s):  
Brian Vash ◽  
Neil Phung ◽  
Sima Zein ◽  
Dianne DeCamp

Abstract The low-density lipoprotein receptor-related protein (LRP) is a 600-kD scavenger receptor that binds a number of protein ligands with high affinity. Although some ligands do not compete with each other, binding of all is uniformly blocked by the 39-kD receptor-associated protein (RAP). RAP is normally found in the endoplasmic reticulum and seems to function as a chaperone for LRP. To identify the binding sites for RAP, lactoferrin, and plasminogen activator inhibitor-1 (PAI-1), a bacterial expression system has been developed to produce soluble LRP fragments spanning residues 783-1399. These residues overlap most of the CNBr fragment containing the second cluster of complement-type repeats (C). Solid phase binding assays show that 125I-RAP binds to fragments containing three successive complement-type repeats: C5-C7. PAI-1 and lactoferrin bind to the same fragments. A fragment containing C5-C7 also blocks uptake and degradation of 125I-RAP by fibroblasts in a concentration-dependent manner. Binding competition experiments show that RAP, PAI-1, and lactoferrin each inhibit the binding of the others, suggesting that at this site in LRP, RAP acts as a competitive, rather than an allosteric, inhibitor of PAI-1 and lactoferrin binding. © 1998 by The American Society of Hematology.


2015 ◽  
Vol 112 (45) ◽  
pp. 13856-13861 ◽  
Author(s):  
Daisuke Takahashi ◽  
Brandon L. Garcia ◽  
Michael R. Kanost

The autoactivation of an initiating serine protease upon binding of pattern recognition proteins to pathogen surfaces is a crucial step in eliciting insect immune responses such as the activation of Toll and prophenoloxidase pathways. However, the molecular mechanisms responsible for autoactivation of the initiating protease remains poorly understood. Here, we investigated the molecular basis for the autoactivation of hemolymph protease 14 (HP14), an initiating protease in hemolymph of Manduca sexta, upon the binding of β-1,3-glucan by its recognition protein, βGRP2. Biochemical analysis using HP14 zymogen (proHP14), βGRP2, and the recombinant proteins as truncated forms showed that the amino-terminal modular low-density lipoprotein receptor class A (LA) domains within HP14 are required for proHP14 autoactivation that is stimulated by its interaction with βGRP2. Consistent with this result, recombinant LA domains inhibit the activation of proHP14 and prophenoloxidase, likely by competing with the interaction between βGRP2 and LA domains within proHP14. Using surface plasmon resonance, we demonstrated that immobilized LA domains directly interact with βGRP2 in a calcium-dependent manner and that high-affinity interaction requires the C-terminal glucanase-like domain of βGRP2. Importantly, the affinity of LA domains for βGRP2 increases nearly 100-fold in the presence of β-1,3-glucan. Taken together, these results present the first experimental evidence to our knowledge that LA domains of an insect modular protease and glucanase-like domains of a βGRP mediate their interaction, and that this binding is essential for the protease autoactivation. Thus, our study provides important insight into the molecular basis underlying the initiation of protease cascade in insect immune responses.


Sign in / Sign up

Export Citation Format

Share Document