scholarly journals Clonal Spread ofCandida glabrataBloodstream Isolates and Fluconazole Resistance Affected by Prolonged Exposure: a 12-Year Single-Center Study in Belgium

2018 ◽  
Vol 62 (8) ◽  
Author(s):  
Berdieke Goemaere ◽  
Katrien Lagrou ◽  
Isabel Spriet ◽  
Marijke Hendrickx ◽  
Pierre Becker

ABSTRACTCandida glabratais a major cause of candidemia in immunocompromised patients and is characterized by a high-level of fluconazole resistance. In the present study, the acquisition of antifungal resistance and potential clonal spread ofC. glabratawere explored at a single center over a 12-year period by analyzing 187 independent clinicalC. glabratabloodstream isolates. One strain was found to be micafungin resistant due to a mutation in theFKS2gene. Fluconazole resistance remained stable throughout the period and was observed in 20 (10.7%) of the isolates. An analysis of the antifungal consumption data revealed that recent prior exposure to fluconazole increased the risk to be infected by a resistant strain. In particular, the duration of the treatment was significantly longer for patients infected by a resistant isolate, while the total and mean daily doses received did not impact the acquisition of resistance inC. glabrata. No link between genotype and resistance was found. However, multilocus variable-number tandem-repeat analyses indicated a potential intrahospital spread of some isolates between patients. These isolates shared the same genetic profiles, and infected patients were hospitalized in the same unit during an overlapping period. Finally, quantitative real-time PCR analyses showed that, unlike that for other ABC efflux pumps, the expression of CgCDR1 was significantly greater in resistant strains, suggesting that it would be more involved in fluconazole (FLC) resistance. Our study provides additional evidence that the proper administration of fluconazole is required to limit resistance and that strict hand hygiene is necessary to avoid the possible spreading ofC. glabrataisolates between patients.

2015 ◽  
Vol 53 (6) ◽  
pp. 1854-1863 ◽  
Author(s):  
Francesca Barletta ◽  
Larissa Otero ◽  
Bouke C. de Jong ◽  
Tomotada Iwamoto ◽  
Kentaro Arikawa ◽  
...  

Sputum samples from new tuberculosis (TB) cases were collected over 2 years as part of a prospective study in the northeastern part of Lima, Peru. To measure the contribution of recent transmission to the high rates of multidrug resistance (MDR) in this area,Mycobacterium tuberculosiscomplex (MTBc) isolates were tested for drug susceptibility to first-line drugs and were genotyped by spoligotyping and 15-locus mycobacterial interspersed repetitive-unit (MIRU-15)-variable-number tandem repeat (VNTR) analysis. MDR was found in 6.8% of 844 isolates, of which 593 (70.3%) were identified as belonging to a known MTBc lineage, whereas 198 isolates (23.5%) could not be assigned to these lineages and 12 (1.4%) represented mixed infections. Lineage 4 accounted for 54.9% (n= 463) of the isolates, most of which belonged to the Haarlem family (n= 279). MIRU-15 analysis grouped 551/791 isolates (69.7%) in 102 clusters, with sizes ranging from 2 to 46 strains. The overall high clustering rate suggests a high level of recent transmission in this population, especially among younger patients (odds ratio [OR], 1.6;P= 0.01). Haarlem strains were more prone to cluster, compared to the other families taken together (OR, 2.0;P< 0.0001), while Beijing (OR, 0.6;P= 0.006) and LAM (OR, 0.7;P= 0.07) strains clustered less. Whereas streptomycin-resistant strains were more commonly found in clusters (OR, 1.8;P= 0.03), clustering rates did not differ between MDR and non-MDR strains (OR, 1.8;P= 0.1). Furthermore, only 16/51 MDR strains clustered with other MDR strains, suggesting that patients with primary MDR infections acquired the infections mostly from index cases outside the study population, such as retreated cases.


2011 ◽  
Vol 77 (14) ◽  
pp. 4949-4958 ◽  
Author(s):  
C. Sekse ◽  
M. Sunde ◽  
B.-A. Lindstedt ◽  
P. Hopp ◽  
T. Bruheim ◽  
...  

ABSTRACTA national survey ofEscherichia coliO26 in Norwegian sheep flocks was conducted, using fecal samples to determine the prevalence. In total, 491 flocks were tested, andE. coliO26 was detected in 17.9% of the flocks. One hundred forty-twoE. coliO26 isolates were examined for flagellar antigens (H typing) and four virulence genes, includingstxandeae, to identify possible Shiga toxin-producingE. coli(STEC) and enteropathogenicE. coli(EPEC). Most isolates (129 out of 142) were identified asE. coliO26:H11. They possessedeaeand may have potential as human pathogens, although only a small fraction were identified as STEC O26:H11, giving a prevalence in sheep flocks of only 0.8%. Correspondingly, the sheep flock prevalence of atypical EPEC (aEPEC) O26:H11 was surprisingly high (15.9%). The genetic relationship between theE. coliO26:H11 isolates was investigated by pulsed-field gel electrophoresis (PFGE) and multilocus variable number tandem repeat analysis (MLVA), identifying 63 distinct PFGE profiles and 22 MLVA profiles. Although the MLVA protocol was less discriminatory than PFGE and a few cases of disagreement were observed, comparison by partition mapping showed an overall good accordance between the two methods. A close relationship between a few isolates of aEPEC O26:H11 and STEC O26:H11 was identified, but all theE. coliO26:H11 isolates should be considered potentially pathogenic to humans. The present study consisted of a representative sampling of sheep flocks from all parts of Norway. This is the first large survey of sheep flocks focusing onE. coliO26 in general, including results of STEC, aEPEC, and nonpathogenic isolates.


2014 ◽  
Vol 58 (8) ◽  
pp. 4404-4410 ◽  
Author(s):  
Carey D. Schlett ◽  
Eugene V. Millar ◽  
Katrina B. Crawford ◽  
Tianyuan Cui ◽  
Jeffrey B. Lanier ◽  
...  

ABSTRACTChlorhexidine has been increasingly utilized in outpatient settings to control methicillin-resistantStaphylococcus aureus(MRSA) outbreaks and as a component of programs for MRSA decolonization and prevention of skin and soft-tissue infections (SSTIs). The objective of this study was to determine the prevalence of chlorhexidine resistance in clinical and colonizing MRSA isolates obtained in the context of a community-based cluster-randomized controlled trial for SSTI prevention, during which 10,030 soldiers were issued chlorhexidine for body washing. We obtained epidemiological data on study participants and performed molecular analysis of MRSA isolates, including PCR assays for determinants of chlorhexidine resistance and high-level mupirocin resistance and pulsed-field gel electrophoresis (PFGE). During the study period, May 2010 to January 2012, we identified 720 MRSA isolates, of which 615 (85.4%) were available for molecular analysis, i.e., 341 clinical and 274 colonizing isolates. Overall, only 10 (1.6%) of 615 isolates were chlorhexidine resistant, including three from the chlorhexidine group and seven from nonchlorhexidine groups (P> 0.99). Five (1.5%) of the 341 clinical isolates and five (1.8%) of the 274 colonizing isolates harbored chlorhexidine resistance genes, and four (40%) of the 10 possessed genetic determinants for mupirocin resistance. All chlorhexidine-resistant isolates were USA300. The overall prevalence of chlorhexidine resistance in MRSA isolates obtained from our study participants was low. We found no association between extended chlorhexidine use and the prevalence of chlorhexidine-resistant MRSA isolates; however, continued surveillance is warranted, as this agent continues to be utilized for infection control and prevention efforts.


2019 ◽  
Vol 64 (1) ◽  
Author(s):  
Alina Iovleva ◽  
Roberta T. Mettus ◽  
Christi L. McElheny ◽  
Marissa P. Griffith ◽  
Mustapha M. Mustapha ◽  
...  

ABSTRACT OXA-232 is an OXA-48-group class D β-lactamase that hydrolyzes expanded-spectrum cephalosporins and carbapenems at low levels. Clinical strains producing OXA-232 are sometimes susceptible to carbapenems, making it difficult to identify them in the clinical microbiology laboratory. We describe the development of carbapenem resistance in sequential clinical isolates of Raoultella ornithinolytica carrying blaOXA-232 in a hospitalized patient, where the ertapenem MIC increased from 0.5 μg/ml to 512 μg/ml and the meropenem MIC increased from 0.125 μg/ml to 32 μg/ml during the course of ertapenem therapy. Whole-genome sequencing (WGS) analysis identified loss-of-function mutations in ompC and ompF in carbapenem-resistant isolates that were not present in the initial carbapenem-susceptible isolate. Complementation of a carbapenem-resistant isolate with an intact ompF gene resulted in 16- to 32-fold reductions in carbapenem MICs, whereas complementation with intact ompC resulted in a 2-fold reduction in carbapenem MICs. Additionally, blaOXA-232 expression increased 2.9-fold in a carbapenem-resistant isolate. Rapid development of high-level carbapenem resistance in initially carbapenem-susceptible OXA-232-producing R. ornithinolytica under selective pressure from carbapenem therapy highlights the diagnostic challenges in detecting Enterobacteriaceae strains producing this inefficient carbapenemase.


2017 ◽  
Vol 56 (1) ◽  
Author(s):  
Yoshiro Murase ◽  
Kiyohiko Izumi ◽  
Akihiro Ohkado ◽  
Akio Aono ◽  
Kinuyo Chikamatsu ◽  
...  

ABSTRACT Strain genotyping based on the variable-number tandem repeat (VNTR) is widely applied for identifying the transmission of Mycobacterium tuberculosis. A consensus set of four hypervariable loci (1982, 3232, 3820, and 4120) has been proposed to improve the discrimination of Beijing lineage strains. Herein, we evaluated the utility of these four hypervariable loci for tracing local tuberculosis transmission in 981 cases over a 14-month period in Japan (2010 to 2011). We used six different VNTR systems, with or without the four hypervariable loci. Patient ages and weighted standard distances (a measure of the dispersion of genotype-clustered cases) were used as proxies for estimating local tuberculosis transmission. The highest levels of isolate discrimination were achieved with VNTR systems that incorporated the four hypervariable loci (i.e., the Japan Anti-Tuberculosis Association [JATA]18-VNTR, mycobacterial interspersed repetitive unit [MIRU]28-VNTR, and 24Beijing-VNTR). The clustering rates by JATA12-VNTR, MIRU15-VNTR, JATA15-VNTR, JATA18-VNTR, MIRU28-VNTR, and 24Beijing-VNTR systems were 52.2%, 51.0%, 39.0%, 24.1%, 23.1%, and 22.0%, respectively. As the discriminative power increased, the median weighted standard distances of the clusters tended to decrease (from 311 to 80 km, P < 0.001, Jonckheere-Terpstra trend test). Concurrently, the median ages of patients in the clusters tended to decrease (from 68 to 60 years, P < 0.001, Jonckheere-Terpstra trend test). These findings suggest that strain typing using the four hypervariable loci improves the prediction of active local tuberculosis transmission. The four-locus set can therefore contribute to the targeted control of tuberculosis in settings with high prevalence of Beijing lineage strains.


2013 ◽  
Vol 80 (5) ◽  
pp. 1570-1579 ◽  
Author(s):  
Bruno Garin-Bastuji ◽  
Virginie Mick ◽  
Gilles Le Carrou ◽  
Sebastien Allix ◽  
Lorraine L. Perrett ◽  
...  

ABSTRACTBrucellataxonomy is perpetually being reshuffled, at both the species and intraspecies levels. Biovar 7 ofBrucella abortuswas suspended from theApproved Lists of Bacterial NamesBrucellaclassification in 1988, because of unpublished evidence that the reference strain 63/75 was a mixture ofB. abortusbiovars 3 and 5. To formally clarify the situation, all isolates previously identified asB. abortusbv. 7 in the AHVLA and ANSES strain collections were characterized by classical microbiological and multiple molecular approaches. Among the 14 investigated strains, including strain 63/75, only four strains, isolated in Kenya, Turkey, and Mongolia, were pure and showed a phenotypic profile in agreement with the former biovar 7, particularly agglutination with both anti-A/anti-M monospecific sera. These results were strengthened by molecular strategies. Indeed, genus- and species-specific methods allowed confirmation that the four pure strains belonged to theB. abortusspecies. The combination of most approaches excluded their affiliation with the recognized biovars (biovars 1 to 6 and 9), while some suggested that they were close to biovar 3.These assays were complemented by phylogenetic and/or epidemiological methods, such as multilocus sequence analysis (MLSA) and variable-number tandem repeat (VNTR) analysis. The results of this polyphasic investigation allow us to propose the reintroduction of biovar 7 into theBrucellaclassification, with at least three representative strains. Interestingly, the Kenyan strain, sharing the same biovar 7 phenotype, was genetically divergent from other three isolates. These discrepancies illustrate the complexity ofBrucellataxonomy. This study suggests that worldwide collections could include strains misidentified asB. abortusbv. 7, and it highlights the need to verify their real taxonomic position.


2017 ◽  
Vol 61 (9) ◽  
Author(s):  
Jeffrey M. Rybak ◽  
C. Michael Dickens ◽  
Josie E. Parker ◽  
Kelly E. Caudle ◽  
Kayihura Manigaba ◽  
...  

ABSTRACT Among emerging non-albicans Candida species, Candida parapsilosis is of particular concern as a cause of nosocomial bloodstream infections in neonatal and intensive care unit patients. While fluconazole and echinocandins are considered effective treatments for such infections, recent reports of fluconazole and echinocandin resistance in C. parapsilosis indicate a growing problem. The present study describes a novel mechanism of antifungal resistance in this organism affecting susceptibility to azole and echinocandin antifungals in a clinical isolate obtained from a patient with prosthetic valve endocarditis. Transcriptome analysis indicated differential expression of several genes in the resistant isolate, including upregulation of ergosterol biosynthesis pathway genes ERG2, ERG5, ERG6, ERG11, ERG24, ERG25, and UPC2. Whole-genome sequencing revealed that the resistant isolate possessed an ERG3 mutation resulting in a G111R amino acid substitution. Sterol profiles indicated a reduction in sterol desaturase activity as a result of this mutation. Replacement of both mutant alleles in the resistant isolate with the susceptible isolate's allele restored wild-type susceptibility to all azoles and echinocandins tested. Disruption of ERG3 in the susceptible and resistant isolates resulted in a loss of sterol desaturase activity, high-level azole resistance, and an echinocandin-intermediate to -resistant phenotype. While disruption of ERG3 in C. albicans resulted in azole resistance, echinocandin MICs, while elevated, remained within the susceptible range. This work demonstrates that the G111R substitution in Erg3 is wholly responsible for the altered azole and echinocandin susceptibilities observed in this C. parapsilosis isolate and is the first report of an ERG3 mutation influencing susceptibility to the echinocandins.


2011 ◽  
Vol 77 (16) ◽  
pp. 5655-5664 ◽  
Author(s):  
Janine Beutlich ◽  
Silke Jahn ◽  
Burkhard Malorny ◽  
Elisabeth Hauser ◽  
Stephan Hühn ◽  
...  

ABSTRACTSalmonellagenomic island 1 (SGI1) contains a multidrug resistance region conferring the ampicillin-chloramphenicol-streptomycin-sulfamethoxazole-tetracycline resistance phenotype encoded byblaPSE-1,floR,aadA2,sul1, andtet(G). Its increasing spread via interbacterial transfer and the emergence of new variants are important public health concerns. We investigated the molecular properties of SGI1-carryingSalmonella entericaserovars selected from a European strain collection. A total of 38 strains belonging toS. entericaserovar Agona,S. entericaserovar Albany,S. entericaserovar Derby,S. entericaserovar Kentucky,S. entericaserovar Newport,S. entericaserovar Paratyphi B dT+, andS. entericaserovar Typhimurium, isolated between 2002 and 2006 in eight European countries from humans, animals, and food, were subjected to antimicrobial susceptibility testing, molecular typing methods (XbaI pulsed-field gel electrophoresis [PFGE], plasmid analysis, and multilocus variable-number tandem-repeat analysis [MLVA]), as well as detection of resistance and virulence determinants (PCR/sequencing and DNA microarray analysis). Typing experiments revealed wide heterogeneity inside the strain collection and even within serovars. PFGE analysis distinguished a total of 26 different patterns. In contrast, the characterization of the phenotypic and genotypic antimicrobial resistance revealed serovar-specific features. Apart from the classical SGI1 organization found in 61% of the strains, seven different variants were identified with antimicrobial resistance properties associated with SGI1-A (S. Derby), SGI1-C (S. Derby), SGI1-F (S. Albany), SGI1-L (S. Newport), SGI1-K (S. Kentucky), SGI1-M (S.Typhimurium), and, eventually, a novel variant similar to SGI1-C with additional gentamicin resistance encoded byaadB. Only minor serovar-specific differences among virulence patterns were detected. In conclusion, the SGI1 carriers exhibited pathogenetic backgrounds comparable to the ones published for susceptible isolates. However, because of their multidrug resistance, they may be more relevant in clinical settings.


2015 ◽  
Vol 81 (16) ◽  
pp. 5395-5410 ◽  
Author(s):  
Salwa Essakhi ◽  
Sophie Cesbron ◽  
Marion Fischer-Le Saux ◽  
Sophie Bonneau ◽  
Marie-Agnès Jacques ◽  
...  

ABSTRACTXanthomonas arboricolais conventionally known as a taxon of plant-pathogenic bacteria that includes seven pathovars. This study showed thatX. arboricolaalso encompasses nonpathogenic bacteria that cause no apparent disease symptoms on their hosts. The aim of this study was to assess theX. arboricolapopulation structure associated with walnut, including nonpathogenic strains, in order to gain a better understanding of the role of nonpathogenic xanthomonads in walnut microbiota. A multilocus sequence analysis (MLSA) was performed on a collection of 100X. arboricolastrains, including 27 nonpathogenic strains isolated from walnut. Nonpathogenic strains grouped outside clusters defined by pathovars and formed separate genetic lineages. A multilocus variable-number tandem-repeat analysis (MLVA) conducted on a collection ofX. arboricolastrains isolated from walnut showed that nonpathogenic strains clustered separately from clonal complexes containingXanthomonas arboricolapv. juglandis strains. Some nonpathogenic strains ofX. arboricoladid not contain the canonical type III secretion system (T3SS) and harbored only one to three type III effector (T3E) genes. In the nonpathogenic strains CFBP 7640 and CFBP 7653, neither T3SS genes nor any of the analyzed T3E genes were detected. This finding raises a question about the origin of nonpathogenic strains and the evolution of plant pathogenicity inX. arboricola. T3E genes that were not detected in any nonpathogenic isolates studied represent excellent candidates to be those responsible for pathogenicity inX. arboricola.


2012 ◽  
Vol 78 (20) ◽  
pp. 7290-7298 ◽  
Author(s):  
Sonia M. Hernandez ◽  
Kevin Keel ◽  
Susan Sanchez ◽  
Eija Trees ◽  
Peter Gerner-Smidt ◽  
...  

ABSTRACTSalmonella entericasubsp.entericaserovar Typhimurium is responsible for the majority of salmonellosis cases worldwide. ThisSalmonellaserovar is also responsible for die-offs in songbird populations. In 2009, there was anS. Typhimurium epizootic reported in pine siskins in the eastern United States. At the time, there was also a human outbreak with this serovar that was associated with contaminated peanuts. As peanuts are also used in wild-bird food, it was hypothesized that the pine siskin epizootic was related to this human outbreak. A comparison of songbird and humanS. Typhimurium pulsed-field gel electrophoresis (PFGE) patterns revealed that the epizootic was attributed not to the peanut-associated strain but, rather, to a songbird strain first characterized from an American goldfinch in 1998. This sameS. Typhimurium strain (PFGE type A3) was also identified in the PulseNet USA database, accounting for 137 of 77,941 totalS. Typhimurium PFGE entries. A second molecular typing method, multiple-locus variable-number tandem-repeat analysis (MLVA), confirmed that the same strain was responsible for the pine siskin epizootic in the eastern United States but was distinct from a genetically related strain isolated from pine siskins in Minnesota. The pine siskin A3 strain was first encountered in May 2008 in an American goldfinch and later in a northern cardinal at the start of the pine siskin epizootic. MLVA also confirmed the clonal nature ofS. Typhimurium in songbirds and established that the pine siskin epizootic strain was unique to the finch family. For 2009, the distribution of PFGE type A3 in passerines and humans mirrored the highest population density of pine siskins for the East Coast.


Sign in / Sign up

Export Citation Format

Share Document