scholarly journals Hsp90 Inhibitors as New Leads To Target Parasitic Diarrheal Diseases

2014 ◽  
Vol 58 (7) ◽  
pp. 4138-4144 ◽  
Author(s):  
Anjan Debnath ◽  
Dea Shahinas ◽  
Clifford Bryant ◽  
Ken Hirata ◽  
Yukiko Miyamoto ◽  
...  

ABSTRACTEntamoeba histolyticaandGiardia lambliaare anaerobic protozoan parasites that cause amebiasis and giardiasis, two of the most common diarrheal diseases worldwide. Current therapy relies on metronidazole, but resistance has been reported and the drug has significant adverse effects. Therefore, it is critical to search for effective, better-tolerated antiamebic and antigiardial drugs. We synthesized several examples of a recently reported class of Hsp90 inhibitors and evaluated these compounds as potential leads for antiparasitic chemotherapy. Several of these inhibitors showed strongin vitroactivity against bothE. histolyticaandG. lambliatrophozoites. The inhibitors were rescreened to discriminate between amebicidal and giardicidal activity and general cytotoxicity toward a mammalian cell line. No mammalian cytotoxicity was found at >100 μM for 48 h for any of the inhibitors. To understand the mechanism of action, a competitive binding assay was performed using the fluorescent ATP analogue bis-ANS (4,4′-dianilino-1,1′-binaphthyl-5,5′-disulfonic acid dipotassium salt) and recombinantE. histolyticaHsp90 preincubated in both the presence and absence of Hsp90 inhibitors. There was significant reduction in fluorescence compared to the level in the control, suggesting thatE. histolyticaHsp90 is a selective target. Thein vivoefficacy and safety of one Hsp90 inhibitor in a mouse model of amebic colitis and giardiasis was demonstrated by significant inhibition of parasite growth at a single oral dose of 5 mg/kg of body weight/day for 7 days and 10 mg/kg/day for 3 days. Considering the results forin vitroactivity andin vivoefficacy, Hsp90 inhibitors represent a promising therapeutic option for amebiasis and giardiasis.

2019 ◽  
Vol 63 (7) ◽  
Author(s):  
Lukas Muri ◽  
Michael Perny ◽  
Jonas Zemp ◽  
Denis Grandgirard ◽  
Stephen L. Leib

ABSTRACTDespite appropriate antibiotic therapy, pneumococcal meningitis (PM) is associated with a case fatality rate of up to 30% in high-income countries. Survivors often suffer from severe lifelong disabilities. An excessive inflammatory reaction drives the pathophysiology, leading to brain damage and neurologic sequelae. We aimed to improve the outcome of experimental PM by simultaneously targeting different pathophysiological mechanisms with combined adjunctive therapies previously shown to be neuroprotective.In vitro, the anti-inflammatory effects of doxycycline and daptomycin were evaluated on primary rat astroglial cells stimulated withStreptococcus pneumoniae. Eleven-day-old infant Wistar rats were infected intracisternally withS. pneumoniaeand randomized for treatment with ceftriaxone or combination adjuvant therapy consisting of ceftriaxone, daptomycin, and doxycycline. During acute PM, combined-adjuvant therapy with ceftriaxone, daptomycin, and doxycycline increased the survival rate from 64.1% to 85.8% (P < 0.01) and alleviated weight loss compared to ceftriaxone monotherapy (P < 0.01). Levels of inflammatory cytokines were significantly reduced by combined-adjuvant therapyin vitro(P < 0.0001) and in cerebrospinal fluidin vivo(P < 0.05). In infected animals treated with combined adjunctive therapy, cortical damage was significantly reduced (P < 0.05), and animals showed a trend toward better hearing capacity 3 weeks after the infection (P = 0.089), an effect which was significant in mildly infected animals (48 decibels [dB] versus 67.22 dB;P < 0.05). These mildly infected animals showed significantly reduced cochlear fibrous occlusion (P < 0.01). By combining nonbacteriolytic daptomycin and anti-inflammatory doxycycline with ceftriaxone, the previously reported beneficial effects of the drugs were cumulated and identified the triple-antibiotic therapy as a promising therapeutic option for pediatric PM.


2019 ◽  
Vol 32 (4) ◽  
Author(s):  
Juan P. Horcajada ◽  
Milagro Montero ◽  
Antonio Oliver ◽  
Luisa Sorlí ◽  
Sònia Luque ◽  
...  

SUMMARYIn recent years, the worldwide spread of the so-called high-risk clones of multidrug-resistant or extensively drug-resistant (MDR/XDR)Pseudomonas aeruginosahas become a public health threat. This article reviews their mechanisms of resistance, epidemiology, and clinical impact and current and upcoming therapeutic options.In vitroandin vivotreatment studies and pharmacokinetic and pharmacodynamic (PK/PD) models are discussed. Polymyxins are reviewed as an important therapeutic option, outlining dosage, pharmacokinetics and pharmacodynamics, and their clinical efficacy against MDR/XDRP. aeruginosainfections. Their narrow therapeutic window and potential for combination therapy are also discussed. Other “old” antimicrobials, such as certain β-lactams, aminoglycosides, and fosfomycin, are reviewed here. New antipseudomonals, as well as those in the pipeline, are also reviewed. Ceftolozane-tazobactam has clinical activity against a significant percentage of MDR/XDRP. aeruginosastrains, and its microbiological and clinical data, as well as recommendations for improving its use against these bacteria, are described, as are those for ceftazidime-avibactam, which has better activity against MDR/XDRP. aeruginosa, especially strains with certain specific mechanisms of resistance. A section is devoted to reviewing upcoming active drugs such as imipenem-relebactam, cefepime-zidebactam, cefiderocol, and murepavadin. Finally, other therapeutic strategies, such as use of vaccines, antibodies, bacteriocins, anti-quorum sensing, and bacteriophages, are described as future options.


2012 ◽  
Vol 56 (6) ◽  
pp. 3196-3206 ◽  
Author(s):  
Mahmoud AbouLaila ◽  
Tserendorj Munkhjargal ◽  
Thillaiampalam Sivakumar ◽  
Akio Ueno ◽  
Yuki Nakano ◽  
...  

ABSTRACTThe apicoplast housekeeping machinery, specifically apicoplast DNA replication, transcription, and translation, was targeted by ciprofloxacin, thiostrepton, and rifampin, respectively, in thein vitrocultures of fourBabesiaspecies. Furthermore, thein vivoeffect of thiostrepton on the growth cycle ofBabesia microtiin BALB/c mice was evaluated. The drugs caused significant inhibition of growth from an initial parasitemia of 1% forBabesia bovis, with 50% inhibitory concentrations (IC50s) of 8.3, 11.5, 12, and 126.6 μM for ciprofloxacin, thiostrepton, rifampin, and clindamycin, respectively. The IC50s for the inhibition ofBabesia bigeminagrowth were 15.8 μM for ciprofloxacin, 8.2 μM for thiostrepton, 8.3 μM for rifampin, and 206 μM for clindamycin. The IC50s forBabesia caballiwere 2.7 μM for ciprofloxacin, 2.7 μM for thiostrepton, 4.7 μM for rifampin, and 4.7 μM for clindamycin. The IC50s for the inhibition ofBabesia equigrowth were 2.5 μM for ciprofloxacin, 6.4 μM for thiostrepton, 4.1 μM for rifampin, and 27.2 μM for clindamycin. Furthermore, an inhibitory effect was revealed for cultures with an initial parasitemia of either 10 or 7% forBabesia bovisorBabesia bigemina, respectively. The three inhibitors caused immediate death ofBabesia bovisandBabesia equi. The inhibitory effects of ciprofloxacin, thiostrepton, and rifampin were confirmed by reverse transcription-PCR. Thiostrepton at a dose of 500 mg/kg of body weight resulted in 77.5% inhibition ofBabesia microtigrowth in BALB/c mice. These results implicate the apicoplast as a potential chemotherapeutic target for babesiosis.


2012 ◽  
Vol 56 (5) ◽  
pp. 2314-2325 ◽  
Author(s):  
Tim Holm Jakobsen ◽  
Maria van Gennip ◽  
Richard Kerry Phipps ◽  
Meenakshi Sundaram Shanmugham ◽  
Louise Dahl Christensen ◽  
...  

ABSTRACTIn relation to emerging multiresistant bacteria, development of antimicrobials and new treatment strategies of infections should be expected to become a high-priority research area. Quorum sensing (QS), a communication system used by pathogenic bacteria likePseudomonas aeruginosato synchronize the expression of specific genes involved in pathogenicity, is a possible drug target. Previousin vitroandin vivostudies revealed a significant inhibition ofP. aeruginosaQS by crude garlic extract. By bioassay-guided fractionation of garlic extracts, we determined the primary QS inhibitor present in garlic to be ajoene, a sulfur-containing compound with potential as an antipathogenic drug. By comprehensivein vitroandin vivostudies, the effect of synthetic ajoene towardP. aeruginosawas elucidated. DNA microarray studies of ajoene-treatedP. aeruginosacultures revealed a concentration-dependent attenuation of a few but central QS-controlled virulence factors, including rhamnolipid. Furthermore, ajoene treatment ofin vitrobiofilms demonstrated a clear synergistic, antimicrobial effect with tobramycin on biofilm killing and a cease in lytic necrosis of polymorphonuclear leukocytes. Furthermore, in a mouse model of pulmonary infection, a significant clearing of infectingP. aeruginosawas detected in ajoene-treated mice compared to a nontreated control group. This study adds to the list of examples demonstrating the potential of QS-interfering compounds in the treatment of bacterial infections.


1993 ◽  
Vol 69 (01) ◽  
pp. 021-024 ◽  
Author(s):  
Shawn Tinlin ◽  
Sandra Webster ◽  
Alan R Giles

SummaryThe development of inhibitors to factor VIII in patients with haemophilia A remains as a serious complication of replacement therapy. An apparently analogous condition has been described in a canine model of haemophilia A (Giles et al., Blood 1984; 63:451). These animals and their relatives have now been followed for 10 years. The observation that the propensity for inhibitor development was not related to the ancestral factor VIII gene has been confirmed by the demonstration of vertical transmission through three generations of the segment of the family related to a normal (non-carrier) female that was introduced for breeding purposes. Haemophilic animals unrelated to this animal have not developed functionally significant factor VIII inhibitors despite intensive factor VIII replacement. Two animals have shown occasional laboratory evidence of factor VIII inhibition but this has not been translated into clinical significant inhibition in vivo as assessed by clinical response and F.VIII recovery and survival characteristics. Substantial heterogeneity of inhibitor expression both in vitro and in vivo has been observed between animals and in individual animals over time. Spontaneous loss of inhibitors has been observed without any therapies designed to induce tolerance, etc., being instituted. There is also phenotypic evidence of polyclonality of the immune response with variable expression over time in a given animal. These observations may have relevance to the human condition both in determining the pathogenetic factors involved in this condition and in highlighting the heterogeneity of its expression which suggests the need for caution in the interpretation of the outcome of interventions designed to modulate inhibitor activity.


Author(s):  
А.А. Раецкая ◽  
С.В. Калиш ◽  
С.В. Лямина ◽  
Е.В. Малышева ◽  
О.П. Буданова ◽  
...  

Цель исследования. Доказательство гипотезы, что репрограммированные in vitro на М3 фенотип макрофаги при введении в организм будут существенно ограничивать развитие солидной карциномы in vivo . Методика. Рост солидной опухоли инициировали у мышей in vivo путем подкожной инъекции клеток карциномы Эрлиха (КЭ). Инъекцию макрофагов с нативным М0 фенотипом и с репрограммированным M3 фенотипом проводили в область формирования солидной КЭ. Репрограммирование проводили с помощью низких доз сыворотки, блокаторов факторов транскрипции STAT3/6 и SMAD3 и липополисахарида. Использовали две схемы введения макрофагов: раннее и позднее. При раннем введении макрофаги вводили на 1-е, 5-е, 10-е и 15-е сут. после инъекции клеток КЭ путем обкалывания макрофагами с четырех сторон область развития опухоли. При позднем введении, макрофаги вводили на 10-е, 15-е, 20-е и 25-е сут. Через 15 и 30 сут. после введения клеток КЭ солидную опухоль иссекали и измеряли ее объем. Эффект введения макрофагов оценивали качественно по визуальной и пальпаторной характеристикам солидной опухоли и количественно по изменению ее объема по сравнению с группой без введения макрофагов (контроль). Результаты. Установлено, что M3 макрофаги при раннем введении от начала развития опухоли оказывают выраженный антиопухолевый эффект in vivo , который был существенно более выражен, чем при позднем введении макрофагов. Заключение. Установлено, что введение репрограммированных макрофагов M3 ограничивает развитие солидной карциномы в экспериментах in vivo . Противоопухолевый эффект более выражен при раннем введении М3 макрофагов. Обнаруженные в работе факты делают перспективным разработку клинической версии биотехнологии ограничения роста опухоли, путем предварительного программирования антиопухолевого врожденного иммунного ответа «в пробирке». Aim. To verify a hypothesis that macrophages reprogrammed in vitro to the M3 phenotype and injected into the body substantially restrict the development of solid carcinoma in vivo . Methods. Growth of a solid tumor was initiated in mice in vivo with a subcutaneous injection of Ehrlich carcinoma (EC) cells. Macrophages with a native M0 phenotype or reprogrammed towards the M3 phenotype were injected into the region of developing solid EC. Reprogramming was performed using low doses of serum, STAT3/6 and SMAD3 transcription factor blockers, and lipopolysaccharide. Two schemes of macrophage administration were used: early and late. With the early administration, macrophages were injected on days 1, 5, 10, and 15 following the injection of EC cells at four sides of the tumor development area. With the late administration, macrophages were injected on days 10, 15, 20, and 25. At 15 and 30 days after the EC cell injection, the solid tumor was excised and its volume was measured. The effect of macrophage administration was assessed both qualitatively by visual and palpation characteristics of solid tumor and quantitatively by changes in the tumor volume compared with the group without the macrophage treatment. Results. M3 macrophages administered early after the onset of tumor development exerted a pronounced antitumor effect in vivo , which was significantly greater than the antitumor effect of the late administration of M3 macrophages. Conclusion. The observed significant inhibition of in vivo growth of solid carcinoma by M3 macrophages makes promising the development of a clinical version of the biotechnology for restriction of tumor growth by in vitro pre-programming of the antitumor, innate immune response.


2019 ◽  
Vol 65 (5) ◽  
pp. 760-765
Author(s):  
Margarita Tyndyk ◽  
Irina Popovich ◽  
A. Malek ◽  
R. Samsonov ◽  
N. Germanov ◽  
...  

The paper presents the results of the research on the antitumor activity of a new drug - atomic clusters of silver (ACS), the colloidal solution of nanostructured silver bisilicate Ag6Si2O7 with particles size of 1-2 nm in deionized water. In vitro studies to evaluate the effect of various ACS concentrations in human tumor cells cultures (breast cancer, colon carcinoma and prostate cancer) were conducted. The highest antitumor activity of ACS was observed in dilutions from 2.7 mg/l to 5.1 mg/l, resulting in the death of tumor cells in all studied cell cultures. In vivo experiments on transplanted Ehrlich carcinoma model in mice consuming 0.75 mg/kg ACS with drinking water revealed significant inhibition of tumor growth since the 14th day of experiment (maximally by 52% on the 28th day, p < 0.05) in comparison with control. Subcutaneous injections of 2.5 mg/kg ACS inhibited Ehrlich's tumor growth on the 7th and 10th days of the experiment (p < 0.05) as compared to control.


2020 ◽  
Vol 26 (22) ◽  
pp. 2610-2619 ◽  
Author(s):  
Tarique Hussain ◽  
Ghulam Murtaza ◽  
Huansheng Yang ◽  
Muhammad S. Kalhoro ◽  
Dildar H. Kalhoro

Background: Inflammation is a complex response of the host defense system to different internal and external stimuli. It is believed that persistent inflammation may lead to chronic inflammatory diseases such as, inflammatory bowel disease, neurological and cardiovascular diseases. Oxidative stress is the main factor responsible for the augmentation of inflammation via various molecular pathways. Therefore, alleviating oxidative stress is effective a therapeutic option against chronic inflammatory diseases. Methods: This review article extends the knowledge of the regulatory mechanisms of flavonoids targeting inflammatory pathways in chronic diseases, which would be the best approach for the development of suitable therapeutic agents against chronic diseases. Results: Since the inflammatory response is initiated by numerous signaling molecules like NF-κB, MAPK, and Arachidonic acid pathways, their encountering function can be evaluated with the activation of Nrf2 pathway, a promising approach to inhibit/prevent chronic inflammatory diseases by flavonoids. Over the last few decades, flavonoids drew much attention as a potent alternative therapeutic agent. Recent clinical evidence has shown significant impacts of flavonoids on chronic diseases in different in-vivo and in-vitro models. Conclusion: Flavonoid compounds can interact with chronic inflammatory diseases at the cellular level and modulate the response of protein pathways. A promising approach is needed to overlook suitable alternative compounds providing more therapeutic efficacy and exerting fewer side effects than commercially available antiinflammatory drugs.


2020 ◽  
Vol 22 (Supplement_3) ◽  
pp. iii406-iii406
Author(s):  
Kübra Taban ◽  
David Pauck ◽  
Mara Maue ◽  
Viktoria Marquardt ◽  
Hua Yu ◽  
...  

Abstract Medulloblastoma (MB) is the most common malignant brain tumor in children and is frequently metastatic at diagnosis. Treatment with surgery, radiation and multi-agent chemotherapy may leave survivors of these brain tumors with long-term deficits as a consequence. One of the four consensus molecular subgroups of MB is the MYC-driven group 3 MB, which is the most malignant type and has a poor prognosis under current therapy. Thus, it is important to discover more effective targeted therapeutic approaches. We conducted a high-throughput drug screening to identify novel compounds showing efficiency in group 3 MB using both clinically established inhibitors (n=196) and clinically-applicable compounds (n=464). More than 20 compounds demonstrated a significantly higher anti-tumoral effect in MYChigh (n=7) compared to MYClow (n=4) MB cell models. Among these compounds, Navitoclax and Clofarabine showed the strongest effect in inducing cell cycle arrest and apoptosis in MYChigh MB models. Furthermore, we show that Navitoclax, an orally bioavailable and blood-brain barrier passing anti-cancer drug, inhibits specifically Bcl-xL proteins. In line, we found a significant correlation between BCL-xL and MYC mRNA levels in 763 primary MB patient samples (Data source: “R2 https://hgserver1.amc.nl”). In addition, Navitoclax and Clofarabine have been tested in cells obtained from MB patient-derived-xenografts, which confirmed their specific efficacy in MYChigh versus MYClow MB. In summary, our approach has identified promising new drugs that significantly reduce cell viability in MYChigh compared to MYClow MB cell models. Our findings point to novel therapeutic vulnerabilities for MB that need to be further validated in vitro and in vivo.


Sign in / Sign up

Export Citation Format

Share Document