scholarly journals Comparison of Local Features from Two Spanish Hospitals Reveals Common and Specific Traits at Multiple Levels of the Molecular Epidemiology of Metallo-β-Lactamase-Producing Pseudomonas spp.

2014 ◽  
Vol 58 (4) ◽  
pp. 2454-2458 ◽  
Author(s):  
Esther Viedma ◽  
Vanesa Estepa ◽  
Carlos Juan ◽  
Jane Castillo-Vera ◽  
Beatriz Rojo-Bezares ◽  
...  

ABSTRACTTwenty-seven well-characterized metallo-β-lactamase (MBL)-producingPseudomonasstrains from two distantly located hospitals were analyzed. The results revealed specific features defining the multilevel epidemiology of strains from each hospital in terms of species, clonality, predominance of high-risk clones, composition/diversity of integrons, and linkages of Tn402-related structures. Therefore, despite the global trends driving the epidemiology of MBL-producingPseudomonasspp., the presence of local features has to be considered in order to understand this threat and implement proper control strategies.

Author(s):  
Carla Benea ◽  
Laura Rendon ◽  
Jesse Papenburg ◽  
Charles Frenette ◽  
Ahmed Imacoudene ◽  
...  

Abstract Objective: Evidence-based infection control strategies are needed for healthcare workers (HCWs) following high-risk exposure to severe acute respiratory coronavirus virus 2 (SARS-CoV-2). In this study, we evaluated the negative predictive value (NPV) of a home-based 7-day infection control strategy. Methods: HCWs advised by their infection control or occupational health officer to self-isolate due to a high-risk SARS-CoV-2 exposure were enrolled between May and October 2020. The strategy consisted of symptom-triggered nasopharyngeal SARS-CoV-2 RNA testing from day 0 to day 7 after exposure and standardized home-based nasopharyngeal swab and saliva testing on day 7. The NPV of this strategy was calculated for (1) clinical coronavirus disease 2019 (COVID-19) diagnosis from day 8–14 after exposure, and for (2) asymptomatic SARS-CoV-2 detected by standardized nasopharyngeal swab and saliva specimens collected at days 9, 10, and 14 after exposure. Interim results are reported in the context of a second wave threatening this essential workforce. Results: Among 30 HCWs enrolled, the mean age was 31 years (SD, ±9), and 24 (80%) were female. Moreover, 3 were diagnosed with COVID-19 by day 14 after exposure (secondary attack rate, 10.0%), and all cases were detected using the 7-day infection control strategy: the NPV for subsequent clinical COVID-19 or asymptomatic SARS-CoV-2 detection by day 14 was 100.0% (95% CI, 93.1%–100.0%). Conclusions: Among HCWs with high-risk exposure to SARS-CoV-2, a home-based 7-day infection control strategy may have a high NPV for subsequent COVID-19 and asymptomatic SARS-CoV-2 detection. Ongoing data collection and data sharing are needed to improve the precision of the estimated NPV, and here we report interim results to inform infection control strategies in light of a second wave threatening this essential workforce.


2019 ◽  
Vol 26 (4) ◽  
pp. 337-351 ◽  
Author(s):  
Jacob Brix

PurposeThe purpose of the study is to investigate how the processes of exploration and exploitation have developed in parallel in the literature of organizational ambidexterity and organizational learning, since James March published his seminal paper in 1991. The goal of the paper is to provide a synthesis of exploration and exploitation based on the two areas of literature.Design/methodology/approachThe study is conceptual and no empirical data have been used.FindingsThe study advances current understanding of exploration and exploitation by building a new model for organizational ambidexterity that takes into account multiple levels of learning, perspectives from absorptive capacity and inter-organizational learning.Originality/valueThe study’s novelty lies in the creation and discussion of a synthesis of exploration and exploitation stemming from organizational ambidexterity and organizational learning.


mBio ◽  
2020 ◽  
Vol 11 (1) ◽  
Author(s):  
Radames J. B. Cordero ◽  
Emma Camacho ◽  
Arturo Casadevall

ABSTRACT The fungal human pathogen Cryptococcus neoformans undergoes melanization in response to nutrient starvation and exposure to exogenous melanin precursors. Melanization protects the fungus against host defense mechanisms such as oxidative damage and other environmental stressors (e.g., heat/cold stress, antimicrobial compounds, ionizing radiation). Conversely, the melanization process generates cytotoxic intermediates, and melanized cells are potentially susceptible to overheating and to certain melanin-binding drugs. Despite the importance of melanin in C. neoformans biology, the signaling mechanisms regulating its synthesis are poorly understood. The recent report by D. Lee, E.-H. Jang, M. Lee, S.-W. Kim, et al. [mBio 10(5):e02267-19, 2019, https://doi.org/10.1128/mBio.02267-19] provides new insights into how C. neoformans regulates melanization. The authors identified a core melanin regulatory network consisting of transcription factors and kinases required for melanization under low-nutrient conditions. The redundant and epistatic connections of this melanin-regulating network demonstrate that C. neoformans melanization is complex and carefully regulated at multiple levels. Such complex regulation reflects the multiple functions of melanin in C. neoformans biology.


2011 ◽  
Vol 77 (13) ◽  
pp. 4669-4675 ◽  
Author(s):  
Dawn C. Bisi ◽  
David J. Lampe

ABSTRACTThe insect-vectored disease malaria is a major world health problem. New control strategies are needed to supplement the current use of insecticides and medications. A genetic approach can be used to inhibit development of malaria parasites (Plasmodiumspp.) in the mosquito host. We hypothesized thatPantoea agglomerans, a bacterial symbiont ofAnophelesmosquitoes, could be engineered to express and secrete anti-Plasmodiumeffector proteins, a strategy termed paratransgenesis. To this end, plasmids that include thepelBorhlyAsecretion signals from the genes of related species (pectate lyase fromErwinia carotovoraand hemolysin A fromEscherichia coli, respectively) were created and tested for their efficacy in secreting known anti-Plasmodiumeffector proteins (SM1, anti-Pbs21, and PLA2) inP. agglomeransandE. coli.P. agglomeranssuccessfully secreted HlyA fusions of anti-Pbs21 and PLA2, and these strains are under evaluation for anti-Plasmodiumactivity in infected mosquitoes. Varied expression and/or secretion of the effector proteins was observed, suggesting that the individual characteristics of a particular effector may require empirical testing of several secretion signals. Importantly, those strains that secreted efficiently grew as well as wild-type strains under laboratory conditions and, thus, may be expected to be competitive with the native microbiota in the environment of the mosquito midgut.


2014 ◽  
Vol 58 (9) ◽  
pp. 5589-5593 ◽  
Author(s):  
Anna L. Sartor ◽  
Muhammad W. Raza ◽  
Shahid A. Abbasi ◽  
Kathryn M. Day ◽  
John D. Perry ◽  
...  

ABSTRACTThe molecular epidemiology of 66 NDM-producing isolates from 2 Pakistani hospitals was investigated, with their genetic relatedness determined using repetitive sequence-based PCR (Rep-PCR). PCR-based replicon typing and screening for antibiotic resistance genes encoding carbapenemases, other β-lactamases, and 16S methylases were also performed. Rep-PCR suggested a clonal spread ofEnterobacter cloacaeandEscherichia coli. A number of plasmid replicon types were identified, with the incompatibility A/C group (IncA/C) being the most common (78%). 16S methylase-encoding genes were coharbored in 81% of NDM-producingEnterobacteriaceae.


1978 ◽  
Vol 49 (6) ◽  
pp. 914-920 ◽  
Author(s):  
Darrell J. Harris ◽  
Victor L. Fornasier ◽  
Kenneth E. Livingston

✓ Hemangiopericytoma is a vascular neoplasm consisting of capillaries outlined by an intact basement membrane that separates the endothelial cells of the capillaries from the spindle-shaped tumor cells in the extravascular area. These neoplasms are found in soft tissues but have rarely been shown to involve the spinal canal. This is a report of three such cases. Surgical removal of the tumor from the spinal canal was technically difficult. A high risk of recurrence has been reported but in these three cases adjunctive radiotherapy appeared to be of benefit in controlling the progression of the disease. These cases, added to the six cases in the literature, confirm the existence of hemangiopericytoma involving the vertebral column with extension into the spinal canal. This entity should be included in the differential diagnosis of lesions of the spinal canal. The risk of intraoperative hemorrhage should be anticipated.


1980 ◽  
Vol 52 (4) ◽  
pp. 525-528 ◽  
Author(s):  
Jerry Bauer ◽  
Jose Luis Salazar ◽  
Oscar Sugar ◽  
Ronald P. Pawl

✓ A retrospective analysis of 1171 consecutive percutaneous retrograde brachial and carotid cerebral angiograms was performed on 635 patients, 50.7% of whom were in the sixth decade or older. Symptoms and signs of cerebrovascular disease were the most frequently investigated and diagnosed, accounting for 46.7% of all the angiograms. Despite this relatively high-risk population, we have found direct percutaneous cerebral angiography to have a very low risk. The pros and cons of direct percutaneous versus transfemoral cerebral angiography are discussed. The literature of the previous 10 years is reviewed, and the complication rate of these two techniques is compared.


mSphere ◽  
2016 ◽  
Vol 1 (3) ◽  
Author(s):  
Valerie J. Price ◽  
Wenwen Huo ◽  
Ardalan Sharifi ◽  
Kelli L. Palmer

ABSTRACT Enterococcus faecalis is a bacterium that normally inhabits the gastrointestinal tracts of humans and other animals. Although these bacteria are members of our native gut flora, they can cause life-threatening infections in hospitalized patients. Antibiotic resistance genes appear to be readily shared among high-risk E. faecalis strains, and multidrug resistance in these bacteria limits treatment options for infections. Here, we find that CRISPR-Cas and restriction-modification systems, which function as adaptive and innate immune systems in bacteria, significantly impact the spread of antibiotic resistance genes in E. faecalis populations. The loss of these systems in high-risk E. faecalis suggests that they are immunocompromised, a tradeoff that allows them to readily acquire new genes and adapt to new antibiotics. Enterococcus faecalis is an opportunistic pathogen and a leading cause of nosocomial infections. Conjugative pheromone-responsive plasmids are narrow-host-range mobile genetic elements (MGEs) that are rapid disseminators of antibiotic resistance in the faecalis species. Clustered regularly interspaced short palindromic repeat (CRISPR)-Cas and restriction-modification confer acquired and innate immunity, respectively, against MGE acquisition in bacteria. Most multidrug-resistant E. faecalis isolates lack CRISPR-Cas and possess an orphan locus lacking cas genes, CRISPR2, that is of unknown function. Little is known about restriction-modification defense in E. faecalis. Here, we explore the hypothesis that multidrug-resistant E. faecalis strains are immunocompromised. We assessed MGE acquisition by E. faecalis T11, a strain closely related to the multidrug-resistant hospital isolate V583 but which lacks the ~620 kb of horizontally acquired genome content that characterizes V583. T11 possesses the E. faecalis CRISPR3-cas locus and a predicted restriction-modification system, neither of which occurs in V583. We demonstrate that CRISPR-Cas and restriction-modification together confer a 4-log reduction in acquisition of the pheromone-responsive plasmid pAM714 in biofilm matings. Additionally, we show that the orphan CRISPR2 locus is functional for genome defense against another pheromone-responsive plasmid, pCF10, only in the presence of cas9 derived from the E. faecalis CRISPR1-cas locus, which most multidrug-resistant E. faecalis isolates lack. Overall, our work demonstrated that the loss of only two loci led to a dramatic reduction in genome defense against a clinically relevant MGE, highlighting the critical importance of the E. faecalis accessory genome in modulating horizontal gene transfer. Our results rationalize the development of antimicrobial strategies that capitalize upon the immunocompromised status of multidrug-resistant E. faecalis. IMPORTANCE Enterococcus faecalis is a bacterium that normally inhabits the gastrointestinal tracts of humans and other animals. Although these bacteria are members of our native gut flora, they can cause life-threatening infections in hospitalized patients. Antibiotic resistance genes appear to be readily shared among high-risk E. faecalis strains, and multidrug resistance in these bacteria limits treatment options for infections. Here, we find that CRISPR-Cas and restriction-modification systems, which function as adaptive and innate immune systems in bacteria, significantly impact the spread of antibiotic resistance genes in E. faecalis populations. The loss of these systems in high-risk E. faecalis suggests that they are immunocompromised, a tradeoff that allows them to readily acquire new genes and adapt to new antibiotics.


2016 ◽  
Vol 54 (12) ◽  
pp. 2969-2974 ◽  
Author(s):  
Laura Pérez-Lago ◽  
Miguel Martínez-Lirola ◽  
Sergio García ◽  
Marta Herranz ◽  
Igor Mokrousov ◽  
...  

Current migratory movements require new strategies for rapidly tracking the transmission of high-risk importedMycobacterium tuberculosisstrains. Whole-genome sequencing (WGS) enables us to identify single-nucleotide polymorphisms (SNPs) and therefore design PCRs to track specific relevant strains. However, fast implementation of these strategies in the hospital setting is difficult because professionals working in diagnostics, molecular epidemiology, and genomics are generally at separate institutions. In this study, we describe the urgent implementation of a system that integrates genomics and molecular tools in a genuine high-risk epidemiological alert involving 2 independent importations of extensively drug resistant (XDR) and pre-XDR BeijingM. tuberculosisstrains from Russia into Spain. Both cases involved commercial sex workers with long-standing tuberculosis (TB). The system was based on strain-specific PCRs tailored from WGS data that were transferred to the local node that was managing the epidemiological alert. The optimized tests were available for prospective implementation in the local node 33 working days after receiving the primary cultures of the XDR strains and were applied to all 42 new incident cases. An interpretable result was obtained in each case (directly from sputum for 27 stain-positive cases) and corresponded to the amplification profiles for strains other than the targeted pre-XDR and XDR strains, which made it possible to prospectively rule out transmission of these high-risk strains at diagnosis.


Sign in / Sign up

Export Citation Format

Share Document