scholarly journals Regulation of cephamycin C synthesis, aspartokinase, dihydrodipicolinic acid synthetase, and homoserine dehydrogenase by aspartic acid family amino acids in Streptomyces clavuligerus.

1982 ◽  
Vol 21 (1) ◽  
pp. 74-84 ◽  
Author(s):  
S Mendelovitz ◽  
Y Aharonowitz
2021 ◽  
Author(s):  
Xinxin Liang ◽  
Huaxiang Deng ◽  
Yajun Bai ◽  
Tai-Ping Fan ◽  
Xiaohui Zheng ◽  
...  

AbstractHomoserine dehydrogenase (HSD) is a key enzyme in the synthesis pathway of the aspartate family of amino acids. HSD can catalyze the reversible reaction of L-aspartate-β-semialdehyde (L-ASA) to L-homoserine (L-Hse). In direct contrast, growth characteristic studies of some bacterial such as Arthrobacter nicotinovorans showed that the bacterium could grow well in medium with L-homoserine as sole carbon, nitrogen and energy source, but the genes responsible for the degradation of L-Hse remain unknown. Based on the function and sequence analysis of HSD, one putative homoserine dehydrogenase from A.nicotinovorans was named AnHSD, which was different from those HSDs that from the aspartic acid metabolic pathway, might be responsible for the degradation of L-Hse. Surprisingly, the analysis showed that the purified AnHSD exhibited specific L-Hse oxidation activity without reducing activity. At pH 10.0 and 40 °C, The Km and Kcat of AnHSD was 6.30 ± 1.03 mM and 462.71 s-1, respectively. AnHSD was partiality for NAD+ cofactor, as well as insensitive to feedback inhibition of downstream amino acids of aspartic acid family. The physiological role of AnHSD in A.nicotinovorans is discussed. These findings provide a novel insight for a better understanding of an alternative genetic pathway for L-Hse catabolism which was dominated by the novel HSD.ImportanceL-homoserine is an important building block for the synthesis of L-threonine, L-methionine, L-lysine which from aspartic acid family amino acids. However, some bacteria can make use of L-homoserine as a sole carbon and nitrogen source. Although the microbial degradation of L-homoserine has been studied several times, the genes involved and the molecular mechanisms remain unclear. In this study, we show that AnHSD responsible for the catabolism of L-homoserine in strain Arthrobacter nicotinovorans, as a special homoserine dehydrogenase with high diversity exists in Arthrobacter, Microbacterium, Rhizobium. We report for the first time that this novel homoserine dehydrogenase is now proposed to play a crucial role in that L-homoserine can use as a sole carbon and nitrogen source. This study is aimed at elucidating the enzymatic properties and function features of homoserine dehydrogenase from Arthrobacter nicotinovorans. These findings provide new insight into the catabolism of L-homoserine in bacteria.


2020 ◽  
Vol 27 ◽  
Author(s):  
Eser Ünsaldı ◽  
Aslıhan Kurt-Kızıldoğan ◽  
Servet Özcan ◽  
Dörte Becher ◽  
Birgit Voigt ◽  
...  

Background: Streptomyces clavuligerus is prolific producer of cephamycin C, a medically important antibiotic. In our former study, cephamycin C titer was 2-fold improved by disrupting homoserine dehydrogenase (hom) gene of aspartate pahway in Streptomyces clavuligerus NRRL3585. Objective: In this article, we aimed to provide a comprehensive understanding at the proteome level on potential complex metabolic changes as a consequence of hom disruption in Streptomyces clavuligerus AK39. Methods: A comparative proteomics study was carried out between the wild type and its hom disrupted AK39 strain by 2 Dimensional Electrophoresis-Matrix Assisted Laser Desorption and Ionization Time-Of-Flight Mass Spectrometry (2DE MALDI-TOF/MS) and Nanoscale Liquid Chromatography-Tandem Mass Spectrometry (nanoLC-MS/MS) analyses. Clusters of Orthologous Groups (COG) database was used to determine the functional categories of the proteins. The theoretical pI and Mw values of the proteins were calculated using Expasy pI/Mw tool. Results: “Hypothetical/Unknown” and “Secondary Metabolism” were the most prominent categories of the differentially expressed proteins. Upto 8.7-fold increased level of the positive regulator CcaR was a key finding since CcaR was shown to bind to cefF promoter thereby direcly controlling its expression. Consistently, CeaS2, the first enzyme of CA biosynthetic pathway, was 3.3-fold elevated. There were also many underrepresented proteins associated with the biosynthesis of several Non-Ribosomal Peptide Synthases (NRPSs), clavams, hybrid NRPS/Polyketide synthases (PKSs) and tunicamycin. The most conspicuously underrepresented protein of amino acid metabolism was 4-Hydroxyphenylpyruvate dioxygenase (HppD) acting in tyrosine catabolism. The levels of a Two Component System (TCS) response regulator containing a CheYlike receiver domain and an HTH DNA-binding domain as well as DNA-binding protein HU were elevated while a TetRfamily transcriptional regulator was underexpressed. Conclusion: The results obtained herein will aid in finding out new targets for further improvement of cephamycin C production in Streptomyces clavuligerus.


2008 ◽  
Vol 59 (11) ◽  
Author(s):  
Iulia Lupan ◽  
Sergiu Chira ◽  
Maria Chiriac ◽  
Nicolae Palibroda ◽  
Octavian Popescu

Amino acids are obtained by bacterial fermentation, extraction from natural protein or enzymatic synthesis from specific substrates. With the introduction of recombinant DNA technology, it has become possible to apply more rational approaches to enzymatic synthesis of amino acids. Aspartase (L-aspartate ammonia-lyase) catalyzes the reversible deamination of L-aspartic acid to yield fumaric acid and ammonia. It is one of the most important industrial enzymes used to produce L-aspartic acid on a large scale. Here we described a novel method for [15N] L-aspartic synthesis from fumarate and ammonia (15NH4Cl) using a recombinant aspartase.


1984 ◽  
Vol 49 (8) ◽  
pp. 1846-1853 ◽  
Author(s):  
Karel Hauzer ◽  
Tomislav Barth ◽  
Linda Servítová ◽  
Karel Jošt

A post-proline endopeptidase (EC 3.4.21.26) was isolated from pig kidneys using a modified method described earlier. The enzyme was further purified by ion exchange chromatography on DEAE-Sephacel. The final product contained about 95% of post-proline endopeptidase. The enzyme molecule consisted of one peptide chain with a relative molecular mass of 65 600 to 70 000, containing a large proportion of acidic and alifatic amino acids (glutamic acid, aspartic acid and leucine) and the N-terminus was formed by aspartic acid or asparagine. In order to prevent losses of enzyme activity, thiol compounds has to be added.


Author(s):  
Jiarong Liu ◽  
Ling Liu ◽  
Hui Rong ◽  
Xiuhui Zhang

Amino acids are recognized as significant components of atmospheric aerosols. However, its potential role in the atmospheric new particle formation (NPF) is poorly understood, especially aspartic acid (ASP), one of...


1988 ◽  
Vol 15 (4) ◽  
pp. 557 ◽  
Author(s):  
MJ Canny ◽  
ME Mccully

Three methods of sampling xylem sap of maize roots were compared: sap bleeding from the stem cut just above the ground; sap bleeding from the cut tops of roots still undisturbed in the ground; and sap aspirated from excavated roots under reduced pressure. The bleeding saps were often unobtainable. When their composition was measured with time from cutting, the concentrations of the major solutes approximately doubled in 2 h. Aspirated sap was chosen as the most reliable sample of root xylem contents. Solute concentrations of the saps showed great variability between individual roots for all solutes, but on average the concentrations found (in �mol g-1 sap) were: total amino acids, 1.8; nitrate, 1.8; sugars (mainly sucrose), 5.4; total organic acids, 18.3. Individual amino acids also varied greatly between roots. Glutamine, aspartic acid and serine were generally most abundant. The principal organic acid found was malic, approximately 8 �mol g-1. From these analyses the ratios of carbon in the fractions (sugars : amino acids : organic acids) = (44 : 6 : 50). 14Carbon pulse fed to a leaf appeared in the root sap within 30 min, rose to a peak at 4-6 h, and declined slowly over a week. During all this time the neutral, cation and anion fractions were sensibly constant in the proportions 86 : 10 : 4. The 14C therefore did not move towards the equilibrium of 12C-compounds in the sap. It is argued that the results do not support a hypothesis of formation of amino carbon from recent assimilate and reduced nitrate in the roots and an export of this to the shoot in the transpiration stream.


1988 ◽  
Vol 8 (3) ◽  
pp. 1247-1252 ◽  
Author(s):  
E Lazar ◽  
S Watanabe ◽  
S Dalton ◽  
M B Sporn

To study the relationship between the primary structure of transforming growth factor alpha (TGF-alpha) and some of its functional properties (competition with epidermal growth factor (EGF) for binding to the EGF receptor and induction of anchorage-independent growth), we introduced single amino acid mutations into the sequence for the fully processed, 50-amino-acid human TGF-alpha. The wild-type and mutant proteins were expressed in a vector by using a yeast alpha mating pheromone promoter. Mutations of two amino acids that are conserved in the family of the EGF-like peptides and are located in the carboxy-terminal part of TGF-alpha resulted in different biological effects. When aspartic acid 47 was mutated to alanine or asparagine, biological activity was retained; in contrast, substitutions of this residue with serine or glutamic acid generated mutants with reduced binding and colony-forming capacities. When leucine 48 was mutated to alanine, a complete loss of binding and colony-forming abilities resulted; mutation of leucine 48 to isoleucine or methionine resulted in very low activities. Our data suggest that these two adjacent conserved amino acids in positions 47 and 48 play different roles in defining the structure and/or biological activity of TGF-alpha and that the carboxy terminus of TGF-alpha is involved in interactions with cellular TGF-alpha receptors. The side chain of leucine 48 appears to be crucial either indirectly in determining the biologically active conformation of TGF-alpha or directly in the molecular recognition of TGF-alpha by its receptor.


2010 ◽  
Vol 18 (5) ◽  
pp. 881-890 ◽  
Author(s):  
Ji-Heung Kim ◽  
Chang Mo Son ◽  
Young Sil Jeon ◽  
Woo-Seok Choe

1966 ◽  
Vol 101 (3) ◽  
pp. 591-597 ◽  
Author(s):  
R M O'Neal ◽  
R E Koeppe ◽  
E I Williams

1. Free glutamic acid, aspartic acid, glutamic acid from glutamine and, in some instances, the glutamic acid from glutathione and the aspartic acid from N-acetyl-aspartic acid were isolated from the brains of sheep and assayed for radioactivity after intravenous injection of [2-(14)C]glucose, [1-(14)C]acetate, [1-(14)C]butyrate or [2-(14)C]propionate. These brain components were also isolated and analysed from rats that had been given [2-(14)C]propionate. The results indicate that, as in rat brain, glucose is by far the best precursor of the free amino acids of sheep brain. 2. Degradation of the glutamate of brain yielded labelling patterns consistent with the proposal that the major route of pyruvate metabolism in brain is via acetyl-CoA, and that the short-chain fatty acids enter the brain without prior metabolism by other tissue and are metabolized in brain via the tricarboxylic acid cycle. 3. When labelled glucose was used as a precursor, glutamate always had a higher specific activity than glutamine; when labelled fatty acids were used, the reverse was true. These findings add support and complexity to the concept of the metabolic; compartmentation' of the free amino acids of brain. 4. The results from experiments with labelled propionate strongly suggest that brain metabolizes propionate via succinate and that this metabolic route may be a limited but important source of dicarboxylic acids in the brain.


Sign in / Sign up

Export Citation Format

Share Document