scholarly journals Influence of Plant Species, Tissue Type, and Temperature on the Capacity of Shiga-ToxigenicEscherichia coliTo Colonize, Grow, and Be Internalized by Plants

2019 ◽  
Vol 85 (11) ◽  
Author(s):  
Bernhard Merget ◽  
Ken J. Forbes ◽  
Fiona Brennan ◽  
Sean McAteer ◽  
Tom Shepherd ◽  
...  

ABSTRACTContamination of fresh produce with pathogenicEscherichia coli, including Shiga-toxigenicE. coli(STEC), represents a serious risk to human health. Colonization is governed by multiple bacterial and plant factors that can impact the probability and suitability of bacterial growth. Thus, we aimed to determine whether the growth potential of STEC for plants associated with foodborne outbreaks (two leafy vegetables and two sprouted seed species) is predictive of the colonization of living plants, as assessed from growth kinetics and biofilm formation in plant extracts. The fitness of STEC isolates was compared to that of environmentalE. coliisolates at temperatures relevant to plant growth. Growth kinetics in plant extracts varied in a plant-dependent and isolate-dependent manner for all isolates, with spinach leaf lysates supporting the highest rates of growth. Spinach extracts also supported the highest levels of biofilm formation. Saccharides were identified to be the major driver of bacterial growth, although no single metabolite could be correlated with growth kinetics. The highest level ofin plantacolonization occurred on alfalfa sprouts, though internalization was 10 times more prevalent in the leafy vegetables than in sprouted seeds. Marked differences inin plantagrowth meant that the growth potential of STEC could be inferred only for sprouted seeds. In contrast, biofilm formation in extracts related to spinach colonization. Overall, the capacity ofE. colito colonize, grow, and be internalized within plants or plant-derived matrices was influenced by the isolate type, plant species, plant tissue type, and temperature, complicating any straightforward relationship betweenin vitroandin plantabehaviors.IMPORTANCEFresh produce is an important vehicle for STEC transmission, and experimental evidence shows that STEC can colonize plants as secondary hosts, but differences in the capacity to colonize occur between different plant species and tissues. Therefore, an understanding of the impact that these plant factors have on the ability of STEC to grow and establish is required for food safety considerations and risk assessment. Here, we determined whether growth and the ability of STEC to form biofilms in plant extracts could be related to specific plant metabolites or could predict the ability of the bacteria to colonize living plants. Growth rates for sprouted seeds (alfalfa and fenugreek) but not those for leafy vegetables (lettuce and spinach) exhibited a positive relationship between plant extracts and living plants. Therefore, the detailed variations at the level of the bacterial isolate, plant species, and tissue type all need to be considered in risk assessment.

2019 ◽  
Author(s):  
Bernhard Merget ◽  
Ken J. Forbes ◽  
Fiona Brennan ◽  
Sean McAteer ◽  
Tom Shepherd ◽  
...  

AbstractContamination of fresh produce with pathogenic Escherichia coli, including Shigatoxigenic E. coli (STEC), represents a serious risk to human health. Colonisation is governed by multiple bacterial and plant factors that can impact on the probability and suitability of bacterial growth. Thus, we aimed to determine whether the growth potential of STEC for plants associated with foodborne outbreaks (two leafy vegetables and two sprouted seed species), is predictive for colonisation of living plants as assessed from growth kinetics and biofilm formation in plant extracts. Fitness of STEC was compared to environmental E. coli, at temperatures relevant to plant growth. Growth kinetics in plant extracts varied in a plant-dependent and isolate-dependent manner for all isolates, with spinach leaf lysates supporting the fastest rates of growth. Spinach extracts also supported the highest levels of biofilm formation. Saccharides were identified as the major driver of bacterial growth, although no single metabolite could be correlated with growth kinetics. The highest level of in planta colonisation occurred on alfalfa sprouts, though internalisation was 10-times more prevalent in the leafy vegetables than in sprouted seeds. Marked differences in in planta growth meant that growth potential could only be inferred for STEC for sprouted seeds. In contrast, biofilm formation in extracts related to spinach colonisation. Overall, the capacity of E. coli to colonise, grow and internalise within plants or plant-derived matrices were influenced by the isolate type, plant species, plant tissue type and temperature, complicating any straight-forward relationship between in vitro and in planta behaviours.ImportanceFresh produce is an important vehicle for STEC transmission and experimental evidence shows that STEC can colonise plants as secondary hosts, but differences in the capacity to colonise occur between different plant species and tissues. Therefore, an understanding of the impact of these plant factors have on the ability of STEC to grow and establish is required for food safety considerations and risk assessment. Here, we determined whether growth and the ability of STEC to form biofilms in plants extracts could be related to specific plant metabolites or could predict the ability of the bacteria to colonise living plants. Growth rates for sprouted seeds (alfalfa and fenugreek) exhibited a positive relationship between plant extracts and living plants, but not for leafy vegetables (lettuce and spinach). Therefore, the detailed variations at the level of the bacterial isolate, plant species and tissue type all need to be considered in risk assessment.


Microbiology ◽  
2021 ◽  
Vol 167 (3) ◽  
Author(s):  
Sathi Mallick ◽  
Shanti Kiran ◽  
Tapas Kumar Maiti ◽  
Anindya S. Ghosh

Escherichia coli low-molecular-mass (LMM) Penicillin-binding proteins (PBPs) help in hydrolysing the peptidoglycan fragments from their cell wall and recycling them back into the growing peptidoglycan matrix, in addition to their reported involvement in biofilm formation. Biofilms are external slime layers of extra-polymeric substances that sessile bacterial cells secrete to form a habitable niche for themselves. Here, we hypothesize the involvement of Escherichia coli LMM PBPs in regulating the nature of exopolysaccharides (EPS) prevailing in its extra-polymeric substances during biofilm formation. Therefore, this study includes the assessment of physiological characteristics of E. coli CS109 LMM PBP deletion mutants to address biofilm formation abilities, viability and surface adhesion. Finally, EPS from parent CS109 and its ΔPBP4 and ΔPBP5 mutants were purified and analysed for sugars present. Deletions of LMM PBP reduced biofilm formation, bacterial adhesion and their viability in biofilms. Deletions also diminished EPS production by ΔPBP4 and ΔPBP5 mutants, purification of which suggested an increased overall negative charge compared with their parent. Also, EPS analyses from both mutants revealed the appearance of an unusual sugar, xylose, that was absent in CS109. Accordingly, the reason for reduced biofilm formation in LMM PBP mutants may be speculated as the subsequent production of xylitol and a hindrance in the standard flow of the pentose phosphate pathway.


mSphere ◽  
2019 ◽  
Vol 4 (4) ◽  
Author(s):  
Kelvin G. K. Goh ◽  
Danilo G. Moriel ◽  
Steven J. Hancock ◽  
Minh-Duy Phan ◽  
Mark A. Schembri

ABSTRACT Proteins secreted by the type V secretion system possess multiple functions, including the capacity to mediate adhesion, aggregation, and biolfilm formation. The type V secretion system can be divided into five subclasses, one of which is the type Ve system. Proteins of the type Ve secretion system are also referred to as inverse autotransporters (IATs). In this study, we performed an in silico analysis of 126 completely sequenced Escherichia coli genomes available in the NCBI database and identified several distinct IAT-encoding gene families whose distribution varied throughout the E. coli phylogeny. The genes included three characterized IATs (intimin, fdeC, and yeeJ) and four uncharacterized IATs (here named iatA, iatB, iatC, and iatD). The four iat genes were cloned from the completely sequenced environmental E. coli strain SMS-3-5 and characterized. Three of these IAT proteins (IatB, IatC, and IatD) were expressed at the cell surface and possessed the capacity to mediate biofilm formation in a recombinant E. coli K-12 strain. Further analysis of the iatB gene, which showed a unique association with extraintestinal E. coli strains, suggested that its regulation is controlled by the LeuO global regulator. Overall, this study provides new data describing the prevalence, sequence variation, domain structure, function, and regulation of IATs found in E. coli. IMPORTANCE Escherichia coli is one of the most prevalent facultative anaerobes of the human gut. E. coli normally exists as a harmless commensal but can also cause disease following the acquisition of genes that enhance its pathogenicity. Adhesion is an important first step in colonization of the host and is mediated by an array of cell surface components. In E. coli, these include a family of adhesins secreted by the type V secretion system. Here, we identified and characterized new proteins from an emerging subclass of the type V secretion system known as the inverse autotransporters (IATs). We found that IAT-encoding genes are present in a wide range of strains and showed that three novel IATs were localized on the E. coli cell surface and mediated biofilm formation. Overall, this study provides new insight into the prevalence, function, and regulation of IATs in E. coli.


mBio ◽  
2020 ◽  
Vol 11 (2) ◽  
Author(s):  
Leanid Laganenka ◽  
María Esteban López ◽  
Remy Colin ◽  
Victor Sourjik

ABSTRACT Bacterial flagellar motility plays an important role in many processes that occur at surfaces or in hydrogels, including adhesion, biofilm formation, and bacterium-host interactions. Consequently, expression of flagellar genes, as well as genes involved in biofilm formation and virulence, can be regulated by the surface contact. In a few bacterial species, flagella themselves are known to serve as mechanosensors, where an increased load on flagella experienced during surface contact or swimming in viscous media controls gene expression. In this study, we show that gene regulation by motility-dependent mechanosensing is common among pathogenic Escherichia coli strains. This regulatory mechanism requires flagellar rotation, and it enables pathogenic E. coli to repress flagellar genes at low loads in liquid culture, while activating motility in porous medium (soft agar) or upon surface contact. It also controls several other cellular functions, including metabolism and signaling. The mechanosensing response in pathogenic E. coli depends on the negative regulator of motility, RflP (YdiV), which inhibits basal expression of flagellar genes in liquid. While no conditional inhibition of flagellar gene expression in liquid and therefore no upregulation in porous medium was observed in the wild-type commensal or laboratory strains of E. coli, mechanosensitive regulation could be recovered by overexpression of RflP in the laboratory strain. We hypothesize that this conditional activation of flagellar genes in pathogenic E. coli reflects adaptation to the dual role played by flagella and motility during infection. IMPORTANCE Flagella and motility are widespread virulence factors among pathogenic bacteria. Motility enhances the initial host colonization, but the flagellum is a major antigen targeted by the host immune system. Here, we demonstrate that pathogenic E. coli strains employ a mechanosensory function of the flagellar motor to activate flagellar expression under high loads, while repressing it in liquid culture. We hypothesize that this mechanism allows pathogenic E. coli to regulate its motility dependent on the stage of infection, activating flagellar expression upon initial contact with the host epithelium, when motility is beneficial, but reducing it within the host to delay the immune response.


2019 ◽  
Vol 85 (17) ◽  
Author(s):  
Jeyachchandran Visvalingam ◽  
Hui Wang ◽  
Tim C. Ells ◽  
Xianqin Yang

ABSTRACT This study investigated the microbial dynamics in multispecies biofilms of Escherichia coli O157:H7 strain 1934 (O157) or Salmonella enterica serovar Typhimurium ATCC 14028 (ST) and 40 strains of meat processing surface bacteria (MPB). Biofilms of O157 or ST with/without MPB were developed on stainless steel coupons at 15°C for up to 6 days. Bacteria in suspensions (inoculum, days 2 and 6) and biofilms (days 2 and 6) were enumerated by plating. The composition of multispecies cultures was determined by 16S rRNA gene sequencing. In suspensions, levels of O157 and ST were ∼2 log higher in single-species than in multispecies cultures on both sampling days. ST was 3 log higher in single-species than in multispecies biofilms. A similar trend, though to a lesser extent, was observed for O157 in biofilms on day 2 but not on day 6. No difference (P > 0.05) in bacterial counts was noted for the two MPB-pathogen cocultures at any time during incubation. Bacterial diversity in multispecies cultures decreased with incubation time, irrespective of the pathogen or culture type. The changes in the relative abundance of MPB were similar for the two MPB-pathogen cocultures, though different interbacterial interactions were noted. Respective fractions of ST and O157 were 2.1% and 0.97% initially and then 0.10% and 0.07% on day 2, and 0.60% and 0.04% on day 6. The relative proportions of facultative anaerobes in both multispecies cultures were greater in both suspensions and biofilms than in the inoculum. Citrobacter, Hafnia, Aeromonas, and Carnobacterium predominated in biofilms but not always in the planktonic cultures. IMPORTANCE Results of this study demonstrate that Salmonella enterica serovar Typhimurium and E. coli O157:H7 can integrate into biofilms when cocultured with bacteria from meat plant processing surfaces. However, the degree of biofilm formation for both pathogens was substantially reduced in the presence of the competing microbiota, with S. Typhimurium more greatly affected than E. coli O157:H7. The expression of extracellular determinants such as curli and cellulose appears to be less important for biofilm formation of the pathogens in multispecies cultures than in monoculture. In contrast to previous reports regarding food processing surface bacteria, data collected here also demonstrate that facultative anaerobes may have a competitive edge over strict aerobes in establishing multispecies biofilms. It would be important to take into account the presence of background bacteria when evaluating the potential persistence of a pathogen in food processing facilities.


2020 ◽  
Vol 367 (1) ◽  
Author(s):  
Bernhard Merget ◽  
Ulrich Dobrindt ◽  
Ken J Forbes ◽  
Norval J C Strachan ◽  
Fiona Brennan ◽  
...  

ABSTRACT Foods of plant origin are recognised as a major source of foodborne pathogens, in particular for Shigatoxigenic Escherichia coli (STEC). Most work for STEC and plant-based fresh produce has focused on the most prevalent outbreak serogroup, O157. However, non-O157 STEC is an emerging hazard, and as such it is important to characterise aspects within this group that reflect their ability to colonise alternative hosts and habitats relevant to horticultural production. Growth kinetics were quantified for a diverse set of clinical enterohaemorrhagic E. coli isolates in extracts made from different tissues of spinach, lettuce or sprouted seeds, or from soil, to represent association with ready-to-eat fresh produce production. For leafy vegetables, spinach apoplast supported the fastest rates of growth and lettuce root extracts generated the slowest growth rates. Growth rates were similar for the majority of isolates in fenugreek or alfalfa sprouted seed extracts. Monosaccharides were the major driver of bacterial growth. No correlations were found for growth rates between different serotypes or for Shigatoxin gene carriage. Thus, growth rates varied in a plant-dependent and isolate-dependent manner, for all plant or soil extracts tested, indicative of isolate-specific differences in metabolic flexibility. These findings are relevant for risk assessment of non-O157 STEC.


2016 ◽  
Vol 198 (19) ◽  
pp. 2662-2672 ◽  
Author(s):  
Kyle A. Floyd ◽  
Courtney A. Mitchell ◽  
Allison R. Eberly ◽  
Spencer J. Colling ◽  
Ellisa W. Zhang ◽  
...  

ABSTRACTUropathogenicEscherichia coli(UPEC), which causes the majority of urinary tract infections (UTI), uses pilus-mediated adherence to initiate biofilm formation in the urinary tract. Oxygen gradients withinE. colibiofilms regulate expression and localization of adhesive type 1 pili. A transposon mutant screen for strains defective in biofilm formation identified theubiI(formerlyvisC) aerobic ubiquinone synthase gene as critical for UPEC biofilm formation. In this study, we characterized a nonpolarubiIdeletion mutant and compared its behavior to that of wild-type bacteria grown under aerobic and anoxic conditions. Consistent with its function as an aerobic ubiquinone-8 synthase, deletion ofubiIin UPEC resulted in reduced membrane potential, diminished motility, and reduced expression of chaperone-usher pathway pili. Loss of aerobic respiration was previously shown to negatively impact expression of type 1 pili. To determine whether this reduction in type 1 pili was due to an energy deficit, wild-type UPEC and theubiImutant were compared for energy-dependent phenotypes under anoxic conditions, in which quinone synthesis is undertaken by anaerobic quinone synthases. Under anoxic conditions, the two strains exhibited wild-type levels of motility but produced diminished numbers of type 1 pili, suggesting that the reduction of type 1 pilus expression in the absence of oxygen is not due to a cellular energy deficit. Acute- and chronic-infection studies in a mouse model of UTI revealed a significant virulence deficit in theubiImutant, indicating that UPEC encounters enough oxygen in the bladder to induce aerobic ubiquinone synthesis during infection.IMPORTANCEThe majority of urinary tract infections are caused by uropathogenicE. coli, a bacterium that can respire in the presence and absence of oxygen. The bladder environment is hypoxic, with oxygen concentrations ranging from 4% to 7%, compared to 21% atmospheric oxygen. This work provides evidence that aerobic ubiquinone synthesis must be engaged during bladder infection, indicating that UPEC bacteria sense and use oxygen as a terminal electron acceptor in the bladder and that this ability drives infection potential despite the fact that UPEC is a facultative anaerobe.


2016 ◽  
Vol 198 (24) ◽  
pp. 3329-3334 ◽  
Author(s):  
David A. Hufnagel ◽  
Margery L. Evans ◽  
Sarah E. Greene ◽  
Jerome S. Pinkner ◽  
Scott J. Hultgren ◽  
...  

ABSTRACTThe extracellular matrix protectsEscherichia colifrom immune cells, oxidative stress, predation, and other environmental stresses. Production of theE. coliextracellular matrix is regulated by transcription factors that are tuned to environmental conditions. The biofilm master regulator protein CsgD upregulates curli and cellulose, the two major polymers in the extracellular matrix of uropathogenicE. coli(UPEC) biofilms. We found that cyclic AMP (cAMP) regulates curli, cellulose, and UPEC biofilms throughcsgD. The alarmone cAMP is produced by adenylate cyclase (CyaA), and deletion ofcyaAresulted in reduced extracellular matrix production and biofilm formation. Thecataboliterepressorprotein (CRP) positively regulatedcsgDtranscription, leading to curli and cellulose production in the UPEC isolate, UTI89. Glucose, a known inhibitor of CyaA activity, blocked extracellular matrix formation when added to the growth medium. The mutant strains ΔcyaAand Δcrpdid not produce rugose biofilms, pellicles, curli, cellulose, or CsgD. Three putative CRP binding sites were identified within thecsgD-csgBintergenic region, and purified CRP could gel shift thecsgD-csgBintergenic region. Additionally, we found that CRP binded upstream ofkpsMT, which encodes machinery for K1 capsule production. Together our work shows that cAMP and CRP influenceE. colibiofilms through transcriptional regulation ofcsgD.IMPORTANCEThecataboliterepressorprotein (CRP)-cyclic AMP (cAMP) complex influences the transcription of ∼7% of genes on theEscherichia colichromosome (D. Zheng, C. Constantinidou, J. L. Hobman, and S. D. Minchin, Nucleic Acids Res 32:5874–5893, 2004,https://dx.doi.org/10.1093/nar/gkh908). Glucose inhibitsE. colibiofilm formation, and ΔcyaAand Δcrpmutants show impaired biofilm formation (D. W. Jackson, J.W. Simecka, and T. Romeo, J Bacteriol 184:3406–3410, 2002,https://dx.doi.org/10.1128/JB.184.12.3406-3410.2002). We determined that the cAMP-CRP complex regulates curli and cellulose production and the formation of rugose and pellicle biofilms throughcsgD. Additionally, we propose that cAMP may work as a signaling compound for uropathogenicE. coli(UPEC) to transition from the bladder lumen to inside epithelial cells for intracellular bacterial community formation through K1 capsule regulation.


2016 ◽  
Vol 82 (17) ◽  
pp. 5320-5331 ◽  
Author(s):  
Cathy L. Abberton ◽  
Ludmila Bereschenko ◽  
Paul W. J. J. van der Wielen ◽  
Cindy J. Smith

ABSTRACTEscherichia coliis the most commonly used indicator for fecal contamination in drinking water distribution systems (WDS). The assumption is thatE. colibacteria are of enteric origin and cannot persist for long outside their host and therefore act as indicators of recent contamination events. This study investigates the fate ofE. coliin drinking water, specifically addressing survival, biofilm formation under shear stress, and regrowth in a series of laboratory-controlled experiments. We show the extended persistence of threeE. colistrains (two enteric isolates and one soil isolate) in sterile and nonsterile drinking water microcosms at 8 and 17°C, withT90(time taken for a reduction in cell number of 1 log10unit) values ranging from 17.4 ± 1.8 to 149 ± 67.7 days, using standard plate counts and a series of (reverse transcription-)quantitative PCR [(RT-)Q-PCR] assays targeting 16S rRNA,tuf,uidA, androdAgenes and transcripts. Furthermore, each strain was capable of attaching to a surface and replicating to form biofilm in the presence of nutrients under a range of shear stress values (0.6, 2.0, and 4.4 dynes [dyn] cm−2; BioFlux system; Fluxion); however, cell numbers did not increase when drinking water flowed over the biofilm (P> 0.05 byttest). Finally,E. coliregrowth within drinking water microcosms containing polyethylene PE-100 pipe wall material was not observed in the biofilm or water phase using a combination of culturing and Q-PCR methods forE. coli. The results of this work highlight that whenE. colienters drinking water it has the potential to survive and attach to surfaces but that regrowth within drinking water or biofilm is unlikely.IMPORTANCEThe provision of clean, safe drinking water is fundamental to society. WDS deliver water to consumers via a vast network of pipes. E. coliis used as an indicator organism for recent contamination events based on the premise that it cannot survive for long outside its host. A key public health concern therefore arises around the fate ofE. colion entering a WDS; its survival, ability to form a biofilm, and potential for regrowth. In particular, ifE. colibacteria have the ability to incorporate and regrow within the pipe wall biofilm of a WDS, they could reinoculate the water at a later stage. This study sheds light on the fate of environmental and enteric strains ofE. coliin drinking water showing extended survival, the potential for biofilm formation under shear stress, and importantly, that regrowth in the presence of an indigenous microbial community is unlikely.


2011 ◽  
Vol 79 (12) ◽  
pp. 4819-4827 ◽  
Author(s):  
Jin-Hyung Lee ◽  
Sushil Chandra Regmi ◽  
Jung-Ae Kim ◽  
Moo Hwan Cho ◽  
Hyungdon Yun ◽  
...  

ABSTRACTPathogenic biofilms have been associated with persistent infections due to their high resistance to antimicrobial agents, while commensal biofilms often fortify the host's immune system. Hence, controlling biofilm formation of both pathogenic bacteria and commensal bacteria is important in bacterium-related diseases. We investigated the effect of plant flavonoids on biofilm formation of enterohemorrhagicEscherichia coliO157:H7. The antioxidant phloretin, which is abundant in apples, markedly reducedE. coliO157:H7 biofilm formation without affecting the growth of planktonic cells, while phloretin did not harm commensalE. coliK-12 biofilms. Also, phloretin reducedE. coliO157:H7 attachment to human colon epithelial cells. Global transcriptome analyses revealed that phloretin repressed toxin genes (hlyEandstx2), autoinducer-2 importer genes (lsrACDBF), curli genes (csgAandcsgB), and dozens of prophage genes inE. coliO157:H7 biofilm cells. Electron microscopy confirmed that phloretin reduced fimbria production inE. coliO157:H7. Also, phloretin suppressed the tumor necrosis factor alpha-induced inflammatory responsein vitrousing human colonic epithelial cells. Moreover, in the rat model of colitis induced by trinitrobenzene sulfonic acid (TNBS), phloretin significantly ameliorated colon inflammation and body weight loss. Taken together, our results suggest that the antioxidant phloretin also acts as an inhibitor ofE. coliO157:H7 biofilm formation as well as an anti-inflammatory agent in inflammatory bowel diseases without harming beneficial commensalE. colibiofilms.


Sign in / Sign up

Export Citation Format

Share Document