scholarly journals Responses of a Thermophilic Synechococcus Isolate from the Microbial Mat of Octopus Spring to Light

2007 ◽  
Vol 73 (13) ◽  
pp. 4268-4278 ◽  
Author(s):  
Oliver Kilian ◽  
Anne-Soisig Steunou ◽  
Fariba Fazeli ◽  
Shaun Bailey ◽  
Devaki Bhaya ◽  
...  

ABSTRACT Thermophilic cyanobacteria of the genus Synechococcus are major contributors to photosynthetic carbon fixation in the photic zone of microbial mats in Octopus Spring, Yellowstone National Park. Synechococcus OS-B′ was characterized with regard to the ability to acclimate to a range of different light irradiances; it grows well at 25 to 200 μmol photons m−2 s−1 but dies when the irradiance is increased to 400 μmol photons m−2 s−1. At 200 μmol photons m−2 s−1 (high light [HL]), we noted several responses that had previously been associated with HL acclimation of cyanobacteria, including cell bleaching, reduced levels of phycobilisomes and chlorophyll, and elevated levels of a specific carotenoid. Synechococcus OS-B′ synthesizes the carotenoids zeaxanthin and β,β-carotene and a novel myxol-anhydrohexoside. Interestingly, 77-K fluorescence emission spectra suggest that Synechococcus OS-B′ accumulates very small amounts of photosystem II relative to that of photosystem I. This ratio further decreased at higher growth irradiances, which may reflect potential photodamage following exposure to HL. We also noted that HL caused reduced levels of transcripts encoding phycobilisome components, particularly that for CpcH, a 20.5-kDa rod linker polypeptide. There was enhanced transcript abundance of genes encoding terminal oxidases, superoxide dismutase, tocopherol cyclase, and phytoene desaturase. Genes encoding the photosystem II D1:1 and D1:2 isoforms (psbAI and psbAII/psbAIII, respectively) were also regulated according to the light regimen. The results are discussed in the context of how Synechococcus OS-B′ may cope with high light irradiances in the high-temperature environment of the microbial mat.

2015 ◽  
Vol 81 (9) ◽  
pp. 2976-2984 ◽  
Author(s):  
Kelsey J. Jesser ◽  
Heather Fullerton ◽  
Kevin W. Hager ◽  
Craig L. Moyer

ABSTRACTThe chemolithotrophicZetaproteobacteriarepresent a novel class ofProteobacteriawhich oxidize Fe(II) to Fe(III) and are the dominant bacterial population in iron-rich microbial mats.Zetaproteobacteriawere first discovered at Lō'ihi Seamount, located 35 km southeast off the big island of Hawai'i, which is characterized by low-temperature diffuse hydrothermal venting. Novel nondegenerate quantitative PCR (qPCR) assays for genes associated with microbial nitrogen fixation, denitrification, arsenic detoxification, Calvin-Benson-Bassham (CBB), and reductive tricarboxylic acid (rTCA) cycles were developed using selected microbial mat community-derived metagenomes. Nitrogen fixation genes were not detected, but all other functional genes were present. This suggests that arsenic detoxification and denitrification processes are likely cooccurring in addition to two modes of carbon fixation. Two groups of microbial mat community types were identified by terminal restriction fragment length polymorphism (T-RFLP) and were further described based on qPCR data for zetaproteobacterial abundance and carbon fixation mode preference. qPCR variance was associated with mat morphology but not with temperature or sample site. Geochemistry data were significantly associated with sample site and mat morphology. Together, these qPCR assays constitute a functional gene signature for iron microbial mat communities across a broad array of temperatures, mat types, chemistries, and sampling sites at Lō'ihi Seamount.


Horticulturae ◽  
2021 ◽  
Vol 7 (2) ◽  
pp. 16
Author(s):  
Heba Hassan ◽  
Aishah Alatawi ◽  
Awatif Abdulmajeed ◽  
Manal Emam ◽  
Hemmat Khattab

Photosystem II is extremely susceptible to environmental alterations, particularly high temperatures. The maintenance of an efficient photosynthetic system under stress conditions is one of the main issues for plants to attain their required energy. Nowadays, searching for stress alleviators is the main goal for maintaining photosynthetic system productivity and, thereby, crop yield under global climate change. Potassium silicate (K2SiO3, 1.5 mM) and silicon dioxide nanoparticles (SiO2NPs, 1.66 mM) were used to mitigate the negative impacts of heat stress (45 °C, 5 h) on wheat (Triticum aestivum L.) cv. (Shandawelly) seedlings. The results showed that K2SiO3 and SiO2NPs diminished leaf rolling symptoms and electrolyte leakage (EL) of heat-stressed wheat leaves. Furthermore, the maximum quantum yield of photosystem II (Fv/Fm) and the performance index (PIabs), as well as the photosynthetic pigments and organic solutes including soluble sugars, sucrose, and proline accumulation, were increased in K2SiO3 and SiO2NPs stressed leaves. At the molecular level, RT-PCR analysis showed that K2SiO3 and SiO2NPs treatments stimulated the overexpression of PsbH, PsbB, and PsbD genes. Notably, this investigation indicated that K2SiO3 was more effective in improving wheat thermotolerance compared to SiO2NPs. The application of K2SiO3 and SiO2NPs may be one of the proposed approaches to improve crop growth and productivity to tolerate climatic change.


1986 ◽  
Vol 41 (5-6) ◽  
pp. 597-603 ◽  
Author(s):  
Aloysius Wild ◽  
Matthias Höpfner ◽  
Wolfgang Rühle ◽  
Michael Richter

The effect of different growth light intensities (60 W·m-2, 6 W·m-2) on the performance of the photosynthetic apparatus of mustard plants (Sinapis alba L.) was studied. A distinct decrease in photosystem II content per chlorophyll under low-light conditions compared to high-light conditions was found. For P-680 as well as for Oᴀ and Oв protein the molar ratio between high-light and low-light plants was 1.4 whereas the respective concentrations per chlorophyll showed some variations for P-680 and Oᴀ on the one and Oв protein on the other hand.In addition to the study of photosystem II components, the concentrations of PQ, Cyt f, and P-700 were measured. The light regime during growth had no effect on the amount of P-700 per chlorophyll but there were large differences with respect to PQ and Cyt f. The molar ratio for Cyt f and PQ between high- and low-light leaves was 2.2 and 1.9, respectively.Two models are proposed, showing the functional organization of the pigment system and the electron transport chain in thylakoids of high-light and low-light leaves of mustard plants.


2014 ◽  
Vol 940 ◽  
pp. 11-15
Author(s):  
Jun Qin Feng ◽  
Jun Fang Chen

Zinc nitride films were deposited by ion sources-assisted magnetron sputtering with the use of Zn target (99.99% purity) on 7059 glass substrates. The films were characterized by XRD, SEM and EDS, the results of which show that the polycrystalline zinc nitride thin film can be grown on the glass substrates, the EDS spectrum confirmed the chemical composition of the films and the SEM images revealed that the zinc nitride thin films have a dense structure. Ultraviolet-visible-near infrared spectrophotometer was used to study the transmittance behaviors of zinc nitride thin films, which calculated the optical band gap by Davis Mott model. The results of the fluorescence emission spectra show the zinc nitride would be a direct band gap semiconductor material.


1993 ◽  
Vol 264 (6) ◽  
pp. C1600-C1608 ◽  
Author(s):  
T. Sandouk ◽  
D. Reda ◽  
C. Hofmann

Adipocytes play an important role in normal physiology as a major site for systemic energy homeostasis. In disorders such as diabetes, adipocyte function is markedly altered. In this study, we investigated the effect of pioglitazone, a novel antidiabetic agent known to lower plasma glucose in animal models of diabetes mellitus, on cellular differentiation and expression of adipose-specific genes. Treatment of confluent 3T3-F442A preadipocyte cultures for 7 days with pioglitazone (Pio; 1 microM) and insulin (Ins; 0.17 microM) resulted in > 95% cell differentiation into lipid-accumulating adipocytes in comparison with 60-80% cell differentiation by treatment with either agent alone. Analysis of triglyceride accumulation showed increases of triglyceride content over time above untreated preadipocytes by treatment of the cells with Ins, Pio, and especially with Ins + Pio. Basal glucose transport, as measured by cellular uptake of 2-deoxy-D-[14C]glucose, was likewise enhanced in a time-dependent manner by treatment of preadipocytes with Ins, Pio, or Ins + Pio, such that a synergistic effect resulted from the combined treatment with both agents. It was further determined that RNA transcript abundance for genes encoding glucose transporters GLUT-1 and GLUT-4, as well as the adipose-specific genes encoding adipsin and aP2, were increased by the Ins, Pio, or Ins + Pio treatment. Taken together, these findings indicate that pioglitazone is a potent adipogenic agent. By promoting differentiation, this agent may move cells into a state active for glucose uptake, storage, and metabolism.


1992 ◽  
Vol 271 ◽  
Author(s):  
Gregory J. Exarhos ◽  
Nancy J. Hess

ABSTRACTIn situ optical methods are reviewed for characterization of phase transformation processes and evaluation of residual stress in solution-deposited metastable oxide films. Such low density films most often are deposited as disordered phases making them prone to crystallization and attendant densification when subjected to increased temperature and/or applied pressure. Inherent stress imparted during film deposition and its evolution during the transformation are evaluated from phonon frequency shifts seen in Raman spectra (TiO2) or from changes in the laser-induced fluorescence emission spectra for films containing rare earth (Sm+3:Y3Al5O12) or transition metal (Cr+3 :Al2O3) dopants. The data in combination with measured increases in line intensities intrinsic to the evolving phase are used to follow crystallization processes in thin films. In general, film deposition parameters are found to influence the crystallite ingrowth kinetics and the magnitude of stress and stress relaxation in the film during the transformation. The utility of these methods to probe crystallization phenomena in oxide films will be addressed.


Sign in / Sign up

Export Citation Format

Share Document