scholarly journals Peptides affecting outer membrane lipid asymmetry (MlaA-OmpC/F) system reduce avian pathogenic Escherichia coli (APEC) colonization in chickens

Author(s):  
Dipak Kathayat ◽  
Gary Closs ◽  
Yosra A. Helmy ◽  
Dhanashree Lokesh ◽  
Sochina Ranjit ◽  
...  

Avian pathogenic E. coli (APEC), an extra-intestinal pathogenic E. coli (ExPEC), causes colibacillosis in chickens and is reportedly associated with urinary tract infections and meningitis in humans. Development of resistance is a major limitation of current ExPEC antibiotic therapy. New antibacterials that can circumvent resistance problem such as antimicrobial peptides (AMPs) are critically needed. Here, we evaluated the efficacy of Lactobacillus rhamnosus GG (LGG) derived peptides against APEC and uncovered their potential antibacterial targets. Three peptides (NPSRQERR: P1; PDENK: P2, and VHTAPK: P3) displayed inhibitory activity against APEC. These peptides were effective against APEC in biofilm and chicken macrophage HD11 cells. Treatment with these peptides reduced the cecum colonization (0.5 to 1.3 logs) of APEC in chickens. Microbiota analysis revealed two peptides (P1 and P2) decreased Enterobacteriaceae abundance with minimal impact on overall cecal microbiota of chickens. Bacterial cytological profiling showed peptides disrupt APEC membrane either by causing membrane shedding, rupturing or flaccidity. Further, gene expression analysis revealed that peptides downregulated the expression of omp C (>13.0 folds), omp F (>11.3 folds) and mla A (>4.9 folds) genes responsible for maintenance of outer membrane (OM) lipid asymmetry. Consistently, immunoblot analysis also showed decreased levels of OmpC and MlaA proteins in APEC treated with peptides. Alanine scanning studies revealed residues crucial (P1: N, E, R and P; P2: D and E; P3: T, P, and K) for their activity. Overall, our study identified peptides with new antibacterial target that can be developed to control APEC infections in chickens, thereby curtailing poultry-originated human ExPEC infections. Importance APEC is a subgroup of ExPEC and considered as a foodborne zoonotic pathogen transmitted through consumption of contaminated poultry products. APEC shares genetic similarities with human ExPECs, including uropathogenic E. coli (UPEC) and neonatal meningitis E. coli (NMEC). Our study identified LGG-derived peptides (P1: NPSRQERR, P2: PDENK, and P3: VHTAPK) effective in reducing APEC infection in chickens. Antimicrobial peptides (AMPs) are regarded as ideal candidates for antibacterial development because of their low propensity for resistance development and ability to kill resistant bacteria. Mechanistic studies showed peptides disrupt APEC membrane by affecting MlaA-OmpC/F system responsible for maintenance of OM lipid asymmetry, a promising new druggable target to overcome resistance problem in Gram-negative bacteria. Altogether, these peptides can provide a valuable approach for development of novel anti-ExPEC therapies, including APEC, human ExPECs and other related Gram-negative pathogens. Further, effective control of APEC infections in chickens can curb poultry-originated ExPEC infections in humans.

2018 ◽  
Author(s):  
Athina Zampara ◽  
Martine C. Holst Sørensen ◽  
Dennis Grimon ◽  
Fabio Antenucci ◽  
Yves Briers ◽  
...  

ABSTRACTBacteriophage-encoded endolysins degrading the essential peptidoglycan of bacteria are promising alternative antimicrobials to handle the global threat of antibiotic resistant bacteria. However, endolysins have limited use against Gram-negative bacteria, since their outer membrane prevents access to the peptidoglycan. Here we present Innolysins, a novel concept for engineering endolysins that allows the enzymes to pass through the outer membrane, hydrolyse the peptidoglycan and kill the target bacterium. Innolysins combine the enzymatic activity of endolysins with the binding capacity of phage receptor binding proteins (RBPs). As our proof of concept, we used phage T5 endolysin and receptor binding protein Pb5, which binds irreversibly to the phage receptor FhuA involved in ferrichrome transport inEscherichia coli. In total, we constructed twelve Innolysins fusing endolysin with Pb5 or the binding domain of Pb5 with or without flexible linkers in between. While the majority of the Innolysins maintained their muralytic activity, Innolysin#6 also showed bactericidal activity againstE. colireducing the number of bacteria by 1 log, thus overcoming the outer membrane barrier. Using anE. coli fhuAdeletion mutant, we demonstrated that FhuA is required for bactericidal activity, supporting that the specific binding of Pb5 to its receptor onE. coliis needed for the endolysin to access the peptidoglycan. Accordingly, Innolysin#6 was able to kill other bacterial species that carry conserved FhuA homologs such asShigella sonneiandPseudomonas aeruginosa. In summary, the Innolysin approach expands recent protein engineering strategies allowing customization of endolysins by exploiting phage RBPs to specifically target Gram-negative bacteria.IMPORTANCEThe extensive use of antibiotics has led to the emergence of antimicrobial resistant bacteria responsible for infections causing more than 50,000 deaths per year across Europe and the US. In response, the World Health Organization has stressed an urgent need to discover new antimicrobials to control in particular Gram-negative bacterial pathogens, due to their extensive multi-drug resistance. However, the outer membrane of Gram-negative bacteria limits the access of many antibacterial agents to their targets. Here, we developed a new approach, Innolysins that enable endolysins to overcome the outer membrane by exploiting the binding specificity of phage receptor binding proteins. As proof of concept, we constructed Innolysins againstE. coliusing the endolysin and the receptor binding protein of phage T5. Given the rich diversity of phage receptor binding proteins and their different binding specificities, our proof of concept paves the route for creating an arsenal of pathogen specific alternative antimicrobials.


2019 ◽  
Vol 15 (4) ◽  
pp. 260-266
Author(s):  
Sanjib Adhikari ◽  
Sujan Khadka ◽  
Sanjeep Sapkota ◽  
Jid Chani Rana ◽  
Santosh Khanal ◽  
...  

Background: This study was conducted to determine the prevalence and antibiotic susceptibility pattern of the uropathogens among the patients attending Bharatpur Hospital. Methods: A laboratory-based cross-sectional study was carried out among the patients attending Bharatpur Hospital from December 2017 to February 2018. Aseptically collected clean catch mid-stream urine samples from 200 clinically suspected patients were cultured and processed for the identification of the uropathogens in the laboratory using standard microbiological procedures. Antibiotic susceptibility test was performed for all the isolates against commonly used antibiotics using the Kirby-Bauer disc diffusion method according to Clinical and Laboratory Standards Institute guidelines 2017. Results: Out of 200 samples collected, 59(29.5%) of the samples showed the presence of pathogens causing urinary tract infection (UTI). Among them, 43(72.9%) were Gram-negative and 16(27.1%) were Gram-positive bacteria. UTI was found to be the most prevalent in females compared to the males and in the age group of 21-30 years. E. coli (72.0%) and Staphylococcus epidermidis (50.0%) were the most predominant Gram-negative and Gram-positive isolates respectively. The isolates were resistant to cefpodoxime (54.2%) and least resistant to gentamicin (10.2%). Twenty (33.9%) isolates were found to be multi-drug resistant (MDR). Conclusions: Higher frequency of antibiotic resistance among UTI patients alerts for continuous surveillance to assure effective control of this infection. Awareness of good hygienic practice especially in females and prudent use of antibiotics in case of infection can be sug-gested. Keywords: antibiotic susceptibility test; E. coli; MDR; urine.


Pathogens ◽  
2021 ◽  
Vol 10 (4) ◽  
pp. 467
Author(s):  
Dipak Kathayat ◽  
Dhanashree Lokesh ◽  
Sochina Ranjit ◽  
Gireesh Rajashekara

Avian pathogenic Escherichia coli (APEC) causes colibacillosis in avian species, and recent reports have suggested APEC as a potential foodborne zoonotic pathogen. Herein, we discuss the virulence and pathogenesis factors of APEC, review the zoonotic potential, provide the current status of antibiotic resistance and progress in vaccine development, and summarize the alternative control measures being investigated. In addition to the known virulence factors, several other factors including quorum sensing system, secretion systems, two-component systems, transcriptional regulators, and genes associated with metabolism also contribute to APEC pathogenesis. The clear understanding of these factors will help in developing new effective treatments. The APEC isolates (particularly belonging to ST95 and ST131 or O1, O2, and O18) have genetic similarities and commonalities in virulence genes with human uropathogenic E. coli (UPEC) and neonatal meningitis E. coli (NMEC) and abilities to cause urinary tract infections and meningitis in humans. Therefore, the zoonotic potential of APEC cannot be undervalued. APEC resistance to almost all classes of antibiotics, including carbapenems, has been already reported. There is a need for an effective APEC vaccine that can provide protection against diverse APEC serotypes. Alternative therapies, especially the virulence inhibitors, can provide a novel solution with less likelihood of developing resistance.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Tessa B. Moyer ◽  
Ashleigh L. Purvis ◽  
Andrew J. Wommack ◽  
Leslie M. Hicks

Abstract Background Plant defensins are a broadly distributed family of antimicrobial peptides which have been primarily studied for agriculturally relevant antifungal activity. Recent studies have probed defensins against Gram-negative bacteria revealing evidence for multiple mechanisms of action including membrane lysis and ribosomal inhibition. Herein, a truncated synthetic analog containing the γ-core motif of Amaranthus tricolor DEF2 (Atr-DEF2) reveals Gram-negative antibacterial activity and its mechanism of action is probed via proteomics, outer membrane permeability studies, and iron reduction/chelation assays. Results Atr-DEF2(G39-C54) demonstrated activity against two Gram-negative human bacterial pathogens, Escherichia coli and Klebsiella pneumoniae. Quantitative proteomics revealed changes in the E. coli proteome in response to treatment of sub-lethal concentrations of the truncated defensin, including bacterial outer membrane (OM) and iron acquisition/processing related proteins. Modification of OM charge is a common response of Gram-negative bacteria to membrane lytic antimicrobial peptides (AMPs) to reduce electrostatic interactions, and this mechanism of action was confirmed for Atr-DEF2(G39-C54) via an N-phenylnaphthalen-1-amine uptake assay. Additionally, in vitro assays confirmed the capacity of Atr-DEF2(G39-C54) to reduce Fe3+ and chelate Fe2+ at cell culture relevant concentrations, thus limiting the availability of essential enzymatic cofactors. Conclusions This study highlights the utility of plant defensin γ-core motif synthetic analogs for characterization of novel defensin activity. Proteomic changes in E. coli after treatment with Atr-DEF2(G39-C54) supported the hypothesis that membrane lysis is an important component of γ-core motif mediated antibacterial activity but also emphasized that other properties, such as metal sequestration, may contribute to a multifaceted mechanism of action.


2014 ◽  
Vol 81 (2) ◽  
pp. 713-725 ◽  
Author(s):  
John W. Schmidt ◽  
Getahun E. Agga ◽  
Joseph M. Bosilevac ◽  
Dayna M. Brichta-Harhay ◽  
Steven D. Shackelford ◽  
...  

ABSTRACTSpecific concerns have been raised that third-generation cephalosporin-resistant (3GCr)Escherichia coli, trimethoprim-sulfamethoxazole-resistant (COTr)E. coli, 3GCrSalmonella enterica, and nalidixic acid-resistant (NALr)S. entericamay be present in cattle production environments, persist through beef processing, and contaminate final products. The prevalences and concentrations of these organisms were determined in feces and hides (at feedlot and processing plant), pre-evisceration carcasses, and final carcasses from three lots of fed cattle (n= 184). The prevalences and concentrations were further determined for strip loins from 103 of the carcasses. 3GCrSalmonellawas detected on 7.6% of hides during processing and was not detected on the final carcasses or strip loins. NALrS. entericawas detected on only one hide. 3GCrE. coliand COTrE. coliwere detected on 100.0% of hides during processing. Concentrations of 3GCrE. coliand COTrE. colion hides were correlated with pre-evisceration carcass contamination. 3GCrE. coliand COTrE. coliwere each detected on only 0.5% of final carcasses and were not detected on strip loins. Five hundred and 42 isolates were screened for extraintestinal pathogenicE. coli(ExPEC) virulence-associated markers. Only two COTrE. coliisolates from hides were ExPEC, indicating that fed cattle products are not a significant source of ExPEC causing human urinary tract infections. The very low prevalences of these organisms on final carcasses and their absence on strip loins demonstrate that current sanitary dressing procedures and processing interventions are effective against antimicrobial-resistant bacteria.


2010 ◽  
Vol 5 (6) ◽  
pp. 827-830
Author(s):  
Georgi Slavchev ◽  
Nadya Markova

AbstractUropathogenic strains of E. coli isolated from urine of patients with urinary tract infections were tested for antibiotic sensitivity using bio-Merieux kits and ATB-UR 5 expression system. The virulence of strains was evaluated by serum bactericidal assay, macrophage “killing” and bacterial adhesive tests. Survival capability of strains was assessed under starvation in saline. The results showed that quinolone-resistant uropathogenic strains of E. coli exhibit significantly reduced adhesive potential but relatively high resistance to serum and macrophage bactericidity. In contrast to laboratory strains, the quinolone-resistant uropathogenic clinical isolate demonstrated increased viability during starvation in saline. Our study suggests that quinolone-resistant uropathogenic strains are highly adaptable clones of E. coli, which can exhibit compensatory viability potential under unfavorable conditions. The clinical occurrence of such phenotypes is likely to contribute to the survival, persistence and spread strategy of resistant bacteria.


Author(s):  
Trâm Quế Anh

TÓM TẮT Đặt vấn đề: Xác định đúng căn nguyên gây NKĐTN và mức độ kháng kháng sinh của các vi khuẩn sẽ giúp cho việc điều trị có hiệu quả, giảm được chi phí điều trị, hạn chế sự gia tăng vi khuẩn đề kháng kháng sinh. Đối tượng và phương pháp nghiên cứu: Các chủng VK gây nhiễm khuẩn đương tiết niệu phân lập được tại bệnh viện Hữu nghị Đa khoa Nghệ An từ 1/2020 đến 12/2020. Thiết kế nghiên cứu: Cắt ngang mô tả. Kết quả: Phân lập được 473 chủng vi khuẩn gây NKĐTN, trong đó, E. coli 38,48%; P. aeruginosa 14,15; Enterococcus sp 10,57; K. pneumoniae 13,32%. E. coli: kháng các kháng sinh Cephalosporine, Quinolones từ 56,7 - 63,8%, Carbapenem 4,5 - 6,2%, sinh ESBL 49,4%. P. aeruginosa: đã kháng các kháng sinh thử nghiệm từ 59,1 - 69,2%. Enterococcus sp: kháng với các kháng sinh nhóm Quinolone 73,5%, kháng Vancomycin 8,3%; Chưa ghi nhận đề kháng Linezolid. K. pneumoniae: kháng nhóm Cephalosporin, Quinolone từ 66,7 - 74,6%, đề kháng với Carbapenem từ 46,0 - 50,8%. Kết luận: Các vi khuẩn gây nhiễm khuẩn tiết niệu thường gặp là: E. coli, P. aeruginosa, Enterococcus sp. K. pneumoniae. Các vi khuẩn phân lập được đã đề kháng với nhiều kháng sinh thường dùng với các mức độ khác nhau. Xuất hiện các chủng vi khuẩn Gram âm kháng Carbapenem, Gram dương kháng Vancomycin. Từ khóa: Nhiễm khuẩn tiết niệu, E.coli, Klebsiella, P.aeruginosa, Enterococcus sp ABSTRACT RESEARCH OF ANTIBIOTICS RESISTANCE OF BACTERIA STRAINS CAUSING URINARY TRACT INFECTIONS ISOLATED AT NGHEAN FRIENDSHIP GENERAL HOSPITAL Background: The good identification of UTI microorganism and their antimicrobial susceptibility would promote the effective treatment, reduce the cost as well as the emergence of drug resistant bacteria. Methods: Bacterial strains causing urinary tract infections were isolated at Nghe An Friendship General Hospital from 1/2020 to 12/2020. Study design: Descriptive cross section. Results: 473 bacterial strains causing UTIs were isolated, in which, E. coli 38.48%; P. aeruginosa 14.15; Enterococcus sp 10.57; K. pneumoniae 13.32%. E. coli: resistant to Cephalosporin antibiotics, Quinolones from 56.7 - 63.8%, Carbapenem 4.5 - 6.2%, producing ESBL 49.4%. P. aeruginosa: was resistant to the tested antibiotics from 59.1 - 69.2%. Enterococcus sp: resistant to Quinolone antibiotics 73.5%, resistant to Vancomycin 8.3%; Linezolid resistance has not been recorded. K. pneumoniae: resistant to Cephalosporin, Quinolone from 66.7 - 74.6%, resistant to Carbapenem from 46.0 - 50.8%. Conclusion: Common bacteria causing urinary tract infections are: E. coli, P. aeruginosa, Enterococcus sp. K. pneumoniae. The isolates were resistant to many commonly used antibiotics to varying degrees. Occurrence of strains of Gram - negative bacteria resistant to Carbapenem, Gram - positive resistant to Vancomycin. Keywords: Urinary Tract infections, E. coli, Klebsiella, P. aeruginosa, Enterococcus sp.


1998 ◽  
Vol 42 (8) ◽  
pp. 2006-2011 ◽  
Author(s):  
Yoichi Hirakata ◽  
Koichi Izumikawa ◽  
Toshiyuki Yamaguchi ◽  
Hiromu Takemura ◽  
Hironori Tanaka ◽  
...  

Gram-negative rods (GNR) carrying the transferable carbapenem resistance gene blaIMP, includingPseudomonas aeruginosa and Serratia marcescens, have been isolated from more than 20 hospitals in Japan. Although the emergence of such multiple-drug-resistant bacteria is of utmost clinical concern, little information in regard to the distribution ofblaIMP-positive GNR in hospitals and the clinical characteristics of infected patients is available. To address this, a system for the rapid detection of theblaIMP gene with a simple DNA preparation and by enzymatic detection of PCR products was developed. A total of 933 ceftazidime-resistant strains of GNR isolated between 1991 and 1996 at Nagasaki University Hospital, Nagasaki, Japan, were screened for theblaIMP gene; 80 isolates were positive, including 53 P. aeruginosa isolates, 13 other glucose-nonfermenting bacteria, 13 S. marcescens isolates, and 1 Citrobacter freundii isolate. Most of the patients from whom blaIMP-positive organisms were isolated had malignant diseases (53.8%). The organisms caused urinary tract infections, pneumonia, or other infections in 46.3% of the patients, while they were just colonizing the other patients evaluated. It was possible that blaIMP-positive P. aeruginosa strains contributed to the death of four patients, while the other infections caused by GNR carryingblaIMP were not lethal. DNA fingerprinting analysis by pulsed-field gel electrophoresis suggested the cross transmission of strains within the hospital. The isolates were ceftazidime resistant and were frequently resistant to other antibiotics. Although no particular means of pathogenesis ofblaIMP-positive GNR is evident at present, the rapid detection of such strains is necessary to help with infection control practices for the prevention of their dissemination and the transmission of the resistance gene to other pathogenic bacteria.


Author(s):  
V. Naveen Kumar ◽  
Chitralekha Saikumar

Urinary tract infections (UTI) are the most common bacterial infection among the humans. One of the most important factors impacting the management of UTI over the past decade is emergence of anti-microbial resistance among uropathogens. ESBL production is one of the most common mechanisms of anti-microbial resistance, the other being Amp C β-lactamases in gram negative bacteria. This study was undertaken to establish the prevalence of ESBL producing strains and their anti-microbial susceptibility pattern to newer agents to guide therapy for urinary tract infection. The present studies isolates and identify Uropathogenic Escherichia coli and its antibiotic susceptibility pattern with special reference to ESBL. The emergence of β-lactamase is a Metter of serious concern .The drug resistance in gram negative bacilli is due to production of β-lactamases, AmpC lactamases, Efflux mechanisms and Porin deficiency. Out of the total 3580 urine samples, 987 samples (27.56%) showed No growth, 1786 (49.88%) showed the presence of Gram negative bacteria. Totally, 1081 E. coli species were isolated and < 30% of them were found to be ESBL positive. Uropathogenic E. coli   isolates are highly susceptible towards Meropenem and Imipenem antibiotics and highly resistant towards β-lactam and Cephalosporins antibiotics. Hence, the present study urged to implement the management plan for using those antibiotics in patients for preventing the antibiotic resistance.


2019 ◽  
Vol 116 (43) ◽  
pp. 21748-21757 ◽  
Author(s):  
Elizabeth M. Hart ◽  
Angela M. Mitchell ◽  
Anna Konovalova ◽  
Marcin Grabowicz ◽  
Jessica Sheng ◽  
...  

The development of new antimicrobial drugs is a priority to combat the increasing spread of multidrug-resistant bacteria. This development is especially problematic in gram-negative bacteria due to the outer membrane (OM) permeability barrier and multidrug efflux pumps. Therefore, we screened for compounds that target essential, nonredundant, surface-exposed processes in gram-negative bacteria. We identified a compound, MRL-494, that inhibits assembly of OM proteins (OMPs) by the β-barrel assembly machine (BAM complex). The BAM complex contains one essential surface-exposed protein, BamA. We constructed a bamA mutagenesis library, screened for resistance to MRL-494, and identified the mutation bamAE470K. BamAE470K restores OMP biogenesis in the presence of MRL-494. The mutant protein has both altered conformation and activity, suggesting it could either inhibit MRL-494 binding or allow BamA to function in the presence of MRL-494. By cellular thermal shift assay (CETSA), we determined that MRL-494 stabilizes BamA and BamAE470K from thermally induced aggregation, indicating direct or proximal binding to both BamA and BamAE470K. Thus, it is the altered activity of BamAE470K responsible for resistance to MRL-494. Strikingly, MRL-494 possesses a second mechanism of action that kills gram-positive organisms. In microbes lacking an OM, MRL-494 lethally disrupts the cytoplasmic membrane. We suggest that the compound cannot disrupt the cytoplasmic membrane of gram-negative bacteria because it cannot penetrate the OM. Instead, MRL-494 inhibits OMP biogenesis from outside the OM by targeting BamA. The identification of a small molecule that inhibits OMP biogenesis at the cell surface represents a distinct class of antibacterial agents.


Sign in / Sign up

Export Citation Format

Share Document