scholarly journals Potential Prebiotic Properties of Almond (Amygdalus communis L.) Seeds

2008 ◽  
Vol 74 (14) ◽  
pp. 4264-4270 ◽  
Author(s):  
G. Mandalari ◽  
C. Nueno-Palop ◽  
G. Bisignano ◽  
M. S. J. Wickham ◽  
A. Narbad

ABSTRACT Almonds are known to have a number of nutritional benefits, including cholesterol-lowering effects and protection against diabetes. They are also a good source of minerals and vitamin E, associated with promoting health and reducing the risk for chronic disease. For this study we investigated the potential prebiotic effect of almond seeds in vitro by using mixed fecal bacterial cultures. Two almond products, finely ground almonds (FG) and defatted finely ground almonds (DG), were subjected to a combined model of the gastrointestinal tract which included in vitro gastric and duodenal digestion, and the resulting fractions were subsequently used as substrates for the colonic model to assess their influence on the composition and metabolic activity of gut bacteria populations. FG significantly increased the populations of bifidobacteria and Eubacterium rectale, resulting in a higher prebiotic index (4.43) than was found for the commercial prebiotic fructooligosaccharides (4.08) at 24 h of incubation. No significant differences in the proportions of gut bacteria groups were detected in response to DG. The increase in the numbers of Eubacterium rectale during fermentation of FG correlated with increased butyrate production. In conclusion, we have shown that the addition of FG altered the composition of gut bacteria by stimulating the growth of bifidobacteria and Eubacterium rectale.

2020 ◽  
Vol 86 (21) ◽  
Author(s):  
Caroline Smith ◽  
Mallory J. Van Haute ◽  
Devin J. Rose

ABSTRACT Whole grains are generally low in nondigestible carbohydrates that are available for fermentation by the gut microbiota, or microbiota-accessible carbohydrates (MAC). However, there is potential to increase MAC in whole grains through food processing. Five processing methods: boiling, extrusion, sourdough bread, unleavened bread, and yeast bread, were applied to whole wheat flour and then subjected to in vitro digestion followed by fermentation using fecal microbiomes from 10 subjects. The microbiomes separated into 2 groups: those that showed high carbohydrate utilization (CU) and those that exhibited low CU. The former exhibited not only enhanced CU but also increased butyrate production (MAC, 31.1 ± 1.1% versus 19.3 ± 1.2%, P < 0.001; butyrate, 5.26 ± 0.26 mM versus 3.17 ± 0.27 mM, P < 0.001). Only the microbiomes in the high-CU group showed significant differences among processing methods: extrusion and sourdough bread led to dichotomous results for MAC and short-chain fatty acid production, where extrusion resulted in high MAC but low butyrate production while sourdough bread resulted in low MAC but high butyrate production. Extrusion led to a noticeable decrease in α-diversity and some members of the families Ruminococcaceae and Lachnospiraceae, with increases in Acinetobacter, Enterococcus, and Staphylococcaceae. This study demonstrated that only microbiomes that exhibited high CU responded to the effects of processing by showing significant differences among processing methods. In these microbiomes, extrusion was able to increase accessibility of the cell wall polysaccharides but did not increase butyrate production. In contrast, sourdough bread led to high butyrate production by supporting important butyrate-producers in the families Lachnospiraceae and Ruminococcaceae. IMPORTANCE Dietary nondigestible carbohydrates, or dietary fiber, have long been recognized for their beneficial health effects. However, recent studies have revealed that fermentation of nondigestible carbohydrates by gut bacteria is critical in mediating many of the health-promoting properties of dietary fibers. Whole grains are excellent candidates to supply the microbiome with a plentiful source of nondigestible carbohydrates, although unfortunately a majority of these carbohydrates in whole grains are not available to gut bacteria for fermentation. Processing is known to alter the structural characteristics of nondigestible carbohydrates in whole grains, yet the relationship between these effects and gut microbial fermentation is unknown. This research aimed to address this important research gap by identifying interactions between whole-grain processing and gut bacteria, with the ultimate goal of increasing the availability of nondigestible carbohydrates for fermentation to enhance host health.


2020 ◽  
Vol 22 (10) ◽  
pp. 675-682 ◽  
Author(s):  
Jie Yin ◽  
Zhongping Qin ◽  
Kai Wu ◽  
Yufei Zhu ◽  
Landian Hu ◽  
...  

Backgrounds and Objective: Blue rubber bleb nevus syndrome (BRBN) or Bean syndrome is a rare Venous Malformation (VM)-associated disorder, which mostly affects the skin and gastrointestinal tract in early childhood. Somatic mutations in TEK have been identified from BRBN patients; however, the etiology of TEK mutation-negative patients of BRBN need further investigation. Method: Two unrelated sporadic BRBNs and one sporadic VM were firstly screened for any rare nonsilent mutation in TEK by Sanger sequencing and subsequently applied to whole-exome sequencing to identify underlying disease causative variants. Overexpression assay and immunoblotting were used to evaluate the functional effect of the candidate disease causative variants. Results: In the VM case, we identified the known causative somatic mutation in the TEK gene c.2740C>T (p.Leu914Phe). In the BRBN patients, we identified two rare germline variants in GLMN gene c.761C>G (p.Pro254Arg) and c.1630G>T(p.Glu544*). The GLMN-P254R-expressing and GLMN-E544X-expressing HUVECs exhibited increased phosphorylation of mTOR-Ser-2448 in comparison with GLMN-WTexpressing HUVECs in vitro. Conclusion: Our results demonstrated that rare germline variants in GLMN might contribute to the pathogenesis of BRBN. Moreover, abnormal mTOR signaling might be the pathogenesis mechanism underlying the dysfunction of GLMN protein.


2020 ◽  
Vol 16 (5) ◽  
pp. 677-688 ◽  
Author(s):  
Sandra Piras ◽  
Paola Corona ◽  
Roberta Ibba ◽  
Federico Riu ◽  
Gabriele Murineddu ◽  
...  

Background: Coxsackievirus infections are associated with cases of aseptic meningitis, encephalitis, myocarditis, and some chronic disease. Methods: A series of benzo[d][1,2,3]triazol-1(2)-yl derivatives (here named benzotriazol-1(2)-yl) (4a-i, 5a-h, 6a-e, g, i, j and 7a-f, h-j) were designed, synthesized and in vitro evaluated for cytotoxicity and antiviral activity against two important human enteroviruses (HEVs) members of the Picornaviridae family [Coxsackievirus B 5 (CVB-5) and Poliovirus 1 (Sb-1)]. Results: Compounds 4c (CC50 >100 μM; EC50 = 9 μM), 5g (CC50 >100 μM; EC50 = 8 μM), and 6a (CC50 >100 μM; EC50 = 10 μM) were found active against CVB-5. With the aim of evaluating the selectivity of action of this class of compounds, a wide spectrum of RNA (positive- and negativesense), double-stranded (dsRNA) or DNA viruses were also assayed. For none of them, significant antiviral activity was determined. Conclusion: These results point towards a selective activity against CVB-5, an important human pathogen that causes both acute and chronic diseases in infants, young children, and immunocompromised patients.


2021 ◽  
pp. 110453
Author(s):  
Devin J. Rose ◽  
Rachana Poudel ◽  
Mallory J. Van Haute ◽  
Qinnan Yang ◽  
Lei Wang ◽  
...  

Agronomy ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 975
Author(s):  
Ye-Eun Park ◽  
Chang-Ha Park ◽  
Hyeon-Ji Yeo ◽  
Yong-Suk Chung ◽  
Sang-Un Park

Peanut (Arachis hypogaea) is a crop that can produce resveratrol, a compound with various biological properties, such as those that exert antioxidant, anticancer, and anti-inflammatory effects. In this study, trans-resveratrol was detected in the roots, leaves, and stems of tan and purple seed coat peanuts (Arachis hypogaea) cultivated in a growth chamber. Both cultivars showed higher levels of resveratrol in the roots than the other plant parts. Thus, both cultivars were inoculated with Agrobacterium rhizogenes, in vitro, to promote hairy root development, thereby producing enhanced levels of t-resveratrol. After 1 month of culture, hairy roots from the two cultivars showed higher levels of fresh weight than those of seedling roots. Furthermore, both cultivars contained higher t-resveratrol levels than those of their seedling roots (6.88 ± 0.21 mg/g and 28.07 ± 0.46 mg/g, respectively); however, purple seed coat peanut hairy roots contained higher t-resveratrol levels than those of tan seed coat peanut hairy roots, ranging from 70.16 to 166.76 mg/g and from 46.61 to 54.31 mg/g, respectively. The findings of this study indicate that peanut hairy roots could be a good source for t-resveratrol production due to their rapid growth, high biomass, and substantial amount of resveratrol.


Foods ◽  
2021 ◽  
Vol 10 (3) ◽  
pp. 554
Author(s):  
Marta C. Coelho ◽  
Tânia B. Ribeiro ◽  
Carla Oliveira ◽  
Patricia Batista ◽  
Pedro Castro ◽  
...  

In times of pandemic and when sustainability is in vogue, the use of byproducts, such as fiber-rich tomato byproducts, can be an asset. There are still no studies on the impact of extraction methodologies and the gastrointestinal tract action on bioactive properties. Thus, this study used a solid fraction obtained after the conventional method (SFCONV) and a solid fraction after the ohmic method (SFOH) to analyze the effect of the gastrointestinal tract on bioactive compounds (BC) and bioactivities. Results showed that the SFOH presents higher total fiber than SFCONV samples, 62.47 ± 1.24–59.06 ± 0.67 g/100 g DW, respectively. Both flours present high amounts of resistant protein, representing between 11 and 16% of insoluble dietary fiber. Furthermore, concerning the total and bound phenolic compounds, the related antioxidant activity measured by 2,2′-azino-bis-3-ethylbenzthiazoline-6-sulphonic acid (ABTS) radical cation decolorization assay presented significantly higher values for SFCONV than SFOH samples (p < 0.05). The main phenolic compounds identified in the two flours were gallic acid, rutin, and p-coumaric acid, and carotenoids were lycopene, phytofluene, and lutein, all known as health promoters. Despite the higher initial values of SFCONV polyphenols and carotenoids, these BCs’ OH flours were more bioaccessible and presented more antioxidant capacity than SFCONV flours, throughout the simulated gastrointestinal tract. These results confirm the potential of ohmic heating to modify the bioaccessibility of tomato BC, enhancing their concentrations and improving their antioxidant capacity.


2019 ◽  
Vol 25 (37) ◽  
pp. 4946-4967 ◽  
Author(s):  
Anna K. Kiss ◽  
Jakub P. Piwowarski

The popularity of food products and medicinal plant materials containing hydrolysable tannins (HT) is nowadays rapidly increasing. Among various health effects attributable to the products of plant origin rich in gallotannins and/or ellagitannins the most often underlined is the beneficial influence on diseases possessing inflammatory background. Results of clinical, interventional and animal in vivo studies clearly indicate the antiinflammatory potential of HT-containing products, as well as pure ellagitannins and gallotannins. In recent years a great emphasis has been put on the consideration of metabolism and bioavailability of natural products during examination of their biological effects. Conducted in vivo and in vitro studies of polyphenols metabolism put a new light on this issue and indicate the gut microbiota to play a crucial role in the health effects following their oral administration. The aim of the review is to summarize the knowledge about HT-containing products’ phytochemistry and their anti-inflammatory effects together with discussion of the data about observed biological activities with regards to the current concepts on the HTs’ bioavailability and metabolism. Orally administered HT-containing products due to the limited bioavailability of ellagitannins and gallotannins can influence immune response at the level of gastrointestinal tract as well as express modulating effects on the gut microbiota composition. However, due to the chemical changes being a result of their transit through gastrointestinal tract, comprising of hydrolysis and gut microbiota metabolism, the activity of produced metabolites has to be taken into consideration. Studies regarding biological effects of the HTs’ metabolites, in particular urolithins, indicate their strong and structure-dependent anti-inflammatory activities, being observed at the concentrations, which fit the range of their established bioavailability. The impact of HTs on inflammatory processes has been well established on various in vivo and in vitro models, while influence of microbiota metabolites on silencing the immune response gives a new perspective on understanding anti-inflammatory effects attributed to HT containing products, especially their postulated effectiveness in inflammatory bowel diseases (IBD) and cardiovascular diseases.


Sign in / Sign up

Export Citation Format

Share Document