scholarly journals Antifungal Effects of Drimane Sesquiterpenoids Isolated from Drimys winteri against Gaeumannomyces graminis var. tritici

2020 ◽  
Vol 86 (24) ◽  
Author(s):  
Cristian Paz ◽  
Sharon Viscardi ◽  
Andres Iturra ◽  
Victor Marin ◽  
Felipe Miranda ◽  
...  

ABSTRACT Gaeumannomyces graminis var. tritici is a soilborne pathogen that causes “take-all” disease, affecting cereal roots. In wheat, G. graminis var. tritici is the most important biotic factor, causing around 30 to 50% losses of yield. Chemical control of this fungal disease is difficult because G. graminis var. tritici is able to reside for a long time in soils. Therefore, the development of environmentally friendly biotechnological strategies to diminish the incidence of soilborne diseases is highly desirable. Natural products are a promising strategy for biocontrol of plant pathogens. A special emphasis is on medicinal plants due to their reported fungitoxic effects. Drimys winteri (canelo) is a medicinal plant that is widely used by the Mapuche ethnic group from Chile due to its anti-inflammatory activity. In addition, inhibitory effects of canelo against phytopathogenic fungi and pest insects have been reported. In this study, we isolated, purified, and identified six drimane sesquiterpenoid compounds from canelo (drimenin, drimenol, polygodial, isodrimeninol, valdiviolide, and drimendiol). Then, we evaluated their antimicrobial effects against G. graminis var. tritici. Compounds were identified by comparing Fourier-transform infrared spectroscopy (FTIR) data and the retention time in thin-layer chromatography (TLC) with those of pure standards. The putative antagonistic effects were confirmed by assessing hyphal cell wall damage using confocal microscopy and lipid peroxidation. Here, we reported the high potential of drimane sesquiterpenoids as natural antifungals against G. graminis var. tritici. Polygodial and isodrimeninol were the most effective, with 50% lethal concentrations (LC50s) between 7 and 10 μg ml−1 and higher levels of fungal lipid peroxidation seen. Accordingly, natural sesquiterpenoids purified from canelo are biologically active against G. graminis var. tritici and could be used as natural biofungicides for sustainable agriculture. IMPORTANCE More than two billion tons of pesticides are used every year worldwide. An interesting sustainable alternative to control plant pathogens is the use of natural products obtained from plants, mainly medicinal plants that offer secondary metabolites important to human/animal health. In this study, we isolated and identified six pure drimane sesquiterpenoids obtained from the bark of Drimys winteri. Additionally, we evaluated their antifungal activities against Gaeumannomyces graminis (the main biotic factor affecting cereal production, especially wheat) by assessing fungal cell wall damage and lipid peroxidation. The compounds obtained showed important antifungal properties against G. graminis var. tritici, mainly isodrimenol, which was the second-most-active compound after polygodial, with an LC50 against G. graminis var. tritici of around 9.5 μg ml−1. This information could be useful for the development of new natural or hemisynthetic antifungal agents against soilborne phytopathogens that could be used in green agriculture.

2015 ◽  
Vol 14 (4) ◽  
pp. 335-344 ◽  
Author(s):  
Yangrae Cho

ABSTRACTAlternariaspecies are mainly saprophytic fungi, but some are plant pathogens. Seven pathotypes ofAlternaria alternatause secondary metabolites of host-specific toxins as pathogenicity factors. These toxins kill host cells prior to colonization. Genes associated with toxin synthesis reside on conditionally dispensable chromosomes, supporting the notion that pathogenicity might have been acquired several times byA. alternata.Alternaria brassicicola, however, seems to employ a different mechanism. Evidence on the use of host-specific toxins as pathogenicity factors remains tenuous, even after a diligent search aided by full-genome sequencing and efficient reverse-genetics approaches. Similarly, no individual genes encoding lipases or cell wall-degrading enzymes have been identified as strong virulence factors, although these enzymes have been considered important for fungal pathogenesis. This review describes our current understanding of toxins, lipases, and cell wall-degrading enzymes and their roles in the pathogenesis ofA. brassicicolacompared to those of other pathogenic fungi. It also describes a set of genes that affect pathogenesis inA. brassicicola. They are involved in various cellular functions that are likely important in most organisms and probably indirectly associated with pathogenesis. Deletion or disruption of these genes results in weakly virulent strains that appear to be sensitive to the defense mechanisms of host plants. Finally, this review discusses the implications of a recent discovery of three important transcription factors associated with pathogenesis and the putative downstream genes that they regulate.


2010 ◽  
Vol 9 (11) ◽  
pp. 1650-1660 ◽  
Author(s):  
Encarnación Dueñas-Santero ◽  
Ana Belén Martín-Cuadrado ◽  
Thierry Fontaine ◽  
Jean-Paul Latgé ◽  
Francisco del Rey ◽  
...  

ABSTRACT In yeast, enzymes with β-glucanase activity are thought to be necessary in morphogenetic events that require controlled hydrolysis of the cell wall. Comparison of the sequence of the Saccharomyces cerevisiae exo-β(1,3)-glucanase Exg1 with the Schizosaccharomyces pombe genome allowed the identification of three genes that were named exg1 + (locus SPBC1105.05), exg2 + (SPAC12B10.11), and exg3 + (SPBC2D10.05). The three proteins have different localizations: Exg1 is secreted to the periplasmic space, Exg2 is a membrane protein, and Exg3 is a cytoplasmic protein. Characterization of the biochemical activity of the proteins indicated that Exg1 and Exg3 are active only against β(1,6)-glucans while no activity was detected for Exg2. Interestingly, Exg1 cleaves the glucans with an endohydrolytic mode of action. exg1 + showed periodic expression during the cell cycle, with a maximum coinciding with the septation process, and its expression was dependent on the transcription factor Sep1. The Exg1 protein localizes to the septum region in a pattern that was different from that of the endo-β(1,3)-glucanase Eng1. Overexpression of Exg2 resulted in an increase in cell wall material at the poles and in the septum, but the putative catalytic activity of the protein was not required for this effect.


2013 ◽  
Vol 57 (9) ◽  
pp. 4470-4480 ◽  
Author(s):  
Min Jung Kwun ◽  
Gabriela Novotna ◽  
Andrew R. Hesketh ◽  
Lionel Hill ◽  
Hee-Jeon Hong

ABSTRACTVanRS two-component regulatory systems are key elements required for the transcriptional activation of inducible vancomycin resistance genes in bacteria, but the precise nature of the ligand signal that activates these systems has remained undefined. Using the resistance system inStreptomyces coelicoloras a model, we have undertaken a series ofin vivostudies which indicate that the VanS sensor kinase in VanB-type resistance systems is activated by vancomycin in complex with thed-alanyl-d-alanine (d-Ala-d-Ala) termini of cell wall peptidoglycan (PG) precursors. Complementation of an essentiald-Ala-d-Ala ligase activity by constitutive expression ofvanAencoding a bifunctionald-Ala-d-Ala andd-alanyl-d-lactate (d-Ala-d-Lac) ligase activity allowed construction of strains that synthesized variable amounts of PG precursors containingd-Ala-d-Ala. Assays quantifying the expression of genes under VanRS control showed that the response to vancomycin in these strains correlated with the abundance ofd-Ala-d-Ala-containing PG precursors; strains producing a lower proportion of PG precursors terminating ind-Ala-d-Ala consistently exhibited a lower response to vancomycin. Pretreatment of wild-type cells with vancomycin or teicoplanin to saturate and mask thed-Ala-d-Ala binding sites in nascent PG also blocked the transcriptional response to subsequent vancomycin exposure, and desleucyl vancomycin, a vancomycin analogue incapable of interacting withd-Ala-d-Ala residues, failed to inducevangene expression. Activation of resistance by a vancomycin–d-Ala-d-Ala PG complex predicts a limit to the proportion of PG that can be derived from precursors terminating ind-Ala-d-Lac, a restriction also enforced by the bifunctional activity of the VanA ligase.


mBio ◽  
2014 ◽  
Vol 5 (1) ◽  
Author(s):  
Peter Mellroth ◽  
Tatyana Sandalova ◽  
Alexey Kikhney ◽  
Francisco Vilaplana ◽  
Dusan Hesek ◽  
...  

ABSTRACT The cytosolic N-acetylmuramoyl-l-alanine amidase LytA protein of Streptococcus pneumoniae, which is released by bacterial lysis, associates with the cell wall via its choline-binding motif. During exponential growth, LytA accesses its peptidoglycan substrate to cause lysis only when nascent peptidoglycan synthesis is stalled by nutrient starvation or β-lactam antibiotics. Here we present three-dimensional structures of LytA and establish the requirements for substrate binding and catalytic activity. The solution structure of the full-length LytA dimer reveals a peculiar fold, with the choline-binding domains forming a rigid V-shaped scaffold and the relatively more flexible amidase domains attached in a trans position. The 1.05-Å crystal structure of the amidase domain reveals a prominent Y-shaped binding crevice composed of three contiguous subregions, with a zinc-containing active site localized at the bottom of the branch point. Site-directed mutagenesis was employed to identify catalytic residues and to investigate the relative impact of potential substrate-interacting residues lining the binding crevice for the lytic activity of LytA. In vitro activity assays using defined muropeptide substrates reveal that LytA utilizes a large substrate recognition interface and requires large muropeptide substrates with several connected saccharides that interact with all subregions of the binding crevice for catalysis. We hypothesize that the substrate requirements restrict LytA to the sites on the cell wall where nascent peptidoglycan synthesis occurs. IMPORTANCE Streptococcus pneumoniae is a human respiratory tract pathogen responsible for millions of deaths annually. Its major pneumococcal autolysin, LytA, is required for autolysis and fratricidal lysis and functions as a virulence factor that facilitates the spread of toxins and factors involved in immune evasion. LytA is also activated by penicillin and vancomycin and is responsible for the lysis induced by these antibiotics. The factors that regulate the lytic activity of LytA are unclear, but it was recently demonstrated that control is at the level of substrate recognition and that LytA required access to the nascent peptidoglycan. The present study was undertaken to structurally and functionally investigate LytA and its substrate-interacting interface and to determine the requirements for substrate recognition and catalysis. Our results reveal that the amidase domain comprises a complex substrate-binding crevice and needs to interact with a large-motif epitope of peptidoglycan for catalysis.


2014 ◽  
Vol 80 (13) ◽  
pp. 3868-3878 ◽  
Author(s):  
Ana Yepes ◽  
Gudrun Koch ◽  
Andrea Waldvogel ◽  
Juan-Carlos Garcia-Betancur ◽  
Daniel Lopez

ABSTRACTProtein localization has been traditionally explored in unicellular organisms, whose ease of genetic manipulation facilitates molecular characterization. The two rod-shaped bacterial modelsEscherichia coliandBacillus subtilishave been prominently used for this purpose and have displaced other bacteria whose challenges for genetic manipulation have complicated any study of cell biology. Among these bacteria is the spherical pathogenic bacteriumStaphylococcus aureus. In this report, we present a new molecular toolbox that facilitates gene deletion in staphylococci in a 1-step recombination process and additional vectors that facilitate the insertion of diverse reporter fusions into newly identified neutral loci of theS. aureuschromosome. Insertion of the reporters does not add any antibiotic resistance genes to the chromosomes of the resultant strains, thereby making them amenable for further genetic manipulations. We used this toolbox to reconstitute the expression ofmreBinS. aureus, a gene that encodes an actin-like cytoskeletal protein which is absent in coccal cells and is presumably lost during the course of speciation. We observed that inS. aureus, MreB is organized in discrete structures in association with the membrane, leading to an unusual redistribution of the cell wall material. The production of MreB also caused cell enlargement, but it did not revert staphylococcal shape. We present interactions of MreB with key staphylococcal cell wall-related proteins. This work facilitates the useS. aureusas a model system in exploring diverse aspects of cellular microbiology.


2012 ◽  
Vol 62 (Pt_8) ◽  
pp. 2011-2017 ◽  
Author(s):  
Anil Sazak ◽  
Mustafa Camas ◽  
Cathrin Spröer ◽  
Hans-Peter Klenk ◽  
Nevzat Sahin

A novel actinobacterium, strain A8036T, isolated from soil, was investigated by using a polyphasic taxonomic approach. The organism formed extensively branched substrate hyphae that generated spiral chains of spores with irregular surfaces. The cell wall contained meso-diaminopimelic acid (type III) and cell-wall sugars were glucose, madurose, mannose and ribose. The predominant menaquinones were MK-9(H6) and MK-9(H4). The phospholipids were diphosphatidylglycerol, phosphatidylinositol and phosphatidylinositol mannosides. The major cellular fatty acids were iso-C16 : 0, C17 : 1 cis9, C16 : 0, C15 : 0 and 10-methyl C17 : 0. Based on 16S rRNA gene sequence analysis, the closest phylogenetic neighbours of strain A8036T were Actinomadura meyerae DSM 44715T (99.23 % similarity), Actinomadura bangladeshensis DSM 45347T (98.9 %) and Actinomadura chokoriensis DSM 45346T (98.3 %). However, DNA–DNA relatedness and phenotypic data demonstrated that strain A8036T could be clearly distinguished from the type strains of all closely related Actinomadura species. Strain A8036T is therefore considered to represent a novel species of the genus Actinomadura , for which the name Actinomadura geliboluensis sp. nov. is proposed. The type strain is A8036T ( = DSM 45508T = KCTC 19868T).


2014 ◽  
Vol 82 (10) ◽  
pp. 4405-4413 ◽  
Author(s):  
Sarah E. Davis ◽  
Alex Hopke ◽  
Steven C. Minkin ◽  
Anthony E. Montedonico ◽  
Robert T. Wheeler ◽  
...  

ABSTRACTThe virulence ofCandida albicansin a mouse model of invasive candidiasis is dependent on the phospholipids phosphatidylserine (PS) and phosphatidylethanolamine (PE). Disruption of the PS synthase geneCHO1(i.e.,cho1Δ/Δ) eliminates PS and blocks thede novopathway for PE biosynthesis. In addition, thecho1Δ/Δ mutant's ability to cause invasive disease is severely compromised. Thecho1Δ/Δ mutant also exhibits cell wall defects, and in this study, it was determined that loss of PS results in decreased masking of cell wall β(1-3)-glucan from the immune system. In wild-typeC. albicans, the outer mannan layer of the wall masks the inner layer of β(1-3)-glucan from exposure and detection by innate immune effector molecules like the C-type signaling lectin Dectin-1, which is found on macrophages, neutrophils, and dendritic cells. Thecho1Δ/Δ mutant exhibits increases in exposure of β(1-3)-glucan, which leads to greater binding by Dectin-1 in both yeast and hyphal forms. The unmasking of β(1-3)-glucan also results in increased elicitation of TNF-α from macrophages in a Dectin-1-dependent manner. The role of phospholipids in fungal pathogenesis is an emerging field, and this is the first study showing that loss of PS inC. albicansresults in decreased masking of β(1-3)-glucan, which may contribute to our understanding of fungus-host interactions.


Sign in / Sign up

Export Citation Format

Share Document