scholarly journals Comparative Analysis of Mycobacterial Truncated Hemoglobin Promoters and thegroEL2Promoter in Free-Living and Intracellular Mycobacteria

2012 ◽  
Vol 78 (18) ◽  
pp. 6499-6506 ◽  
Author(s):  
Sunil V. Joseph ◽  
G. K. Madhavilatha ◽  
R. Ajay Kumar ◽  
Sathish Mundayoor

ABSTRACTThe success ofMycobacterium tuberculosisdepends on its ability to withstand and survive the hazardous environment inside the macrophages that are created by reactive oxygen intermediates, reactive nitrogen intermediates, severe hypoxia, low pH, and high CO2levels. Therefore, an effective detoxification system is required for the pathogen to persistin vivo. The genome ofM. tuberculosiscontains a new family of hemoproteins named truncated hemoglobin O (trHbO) and truncated hemoglobin N (trHbN), encoded by theglbOandglbNgenes, respectively, important in the survival ofM. tuberculosisin macrophages. Mycobacterial heat shock proteins are known to undergo rapid upregulation under stress conditions. The expression profiles of the promoters of these genes were studied by constructing transcriptional fusions with green fluorescent protein and monitoring the promoter activity in both free-living and intracellular milieus at different time points. WhereasglbNshowed an early response to the oxidative and nitrosative stresses tested,glbOgave a lasting response to lower concentrations of both stresses. At all time points and under all stress conditions tested,groEL2showed higher expression than both trHb promoters and expression of both promoters showed an increase while inside the macrophages. Real-time PCR analysis of trHb andgroEL2mRNAs showed an initial upregulation at 24 h postinfection. The presence of theglbOprotein imparted an increased survival toM. smegmatisin THP-1 differentiated macrophages compared to that imparted by theglbNandhsp65proteins. The comparative upregulation shown by both trHb promoters while grown inside macrophages indicates the importance of these promoters for the survival ofM. tuberculosisin the hostile environment of the host.

2014 ◽  
Vol 80 (19) ◽  
pp. 6136-6145 ◽  
Author(s):  
Vitor O. Silva ◽  
Larissa O. Soares ◽  
Abelardo Silva Júnior ◽  
Hilário C. Mantovani ◽  
Yung-Fu Chang ◽  
...  

ABSTRACTEscherichia coliis a highly adaptive microorganism, and its ability to form biofilms under certain conditions can be critical for antimicrobial resistance. The adhesion of fourE. coliisolates from bovine mastitis to bovine mammary alveolar (MAC-T) cells, biofilm production on a polystyrene surface, and the expression profiles of the genesfliC,csgA,fimA, andluxSin the presence of enrofloxacin, gentamicin, co-trimoxazole, and ampicillin at half of the MIC were investigated. Increased adhesion ofE. coliisolates in the presence of antimicrobials was not observed; however, increased internalization of some isolates was observed by confocal microscopy. All of the antimicrobials induced the formation of biofilms by at least one isolate, whereas enrofloxacin and co-trimoxazole decreased biofilm formation by at least one isolate. Quantitative PCR analysis revealed that all four genes were differentially expressed when bacteria were exposed to subinhibitory concentrations of antimicrobials, with expression altered on the order of 1.5- to 22-fold. However, it was not possible to associate gene expression with induction or reduction of biofilm formation in the presence of the antimicrobials. Taken together, the results demonstrate that antimicrobials could induce biofilm formation by some isolates, in addition to inducing MAC-T cell invasion, a situation that might occurin vivo, potentially resulting in a bacterial reservoir in the udder, which might explain some cases of persistent mastitis in herds.


mBio ◽  
2014 ◽  
Vol 5 (4) ◽  
Author(s):  
Nicolas J. Delalez ◽  
Richard M. Berry ◽  
Judith P. Armitage

ABSTRACTSome proteins in biological complexes exchange with pools of free proteins while the complex is functioning. Evidence is emerging that protein exchange can be part of an adaptive mechanism. The bacterial flagellar motor is one of the most complex biological machines and is an ideal model system to study protein dynamics in large multimeric complexes. Recent studies showed that the copy number of FliM in the switch complex and the fraction of FliM that exchanges vary with the direction of flagellar rotation. Here, we investigated the stoichiometry and turnover of another switch complex component, FliN, labeled with the fluorescent protein CyPet, inEscherichia coli. Our results confirm that,in vivo, FliM and FliN form a complex with stoichiometry of 1:4 and function as a unit. We estimated that wild-type motors contained 120 ± 26 FliN molecules. Motors that rotated only clockwise (CW) or counterclockwise (CCW) contained 114 ± 17 and 144 ± 26 FliN molecules, respectively. The ratio of CCW-to-CW FliN copy numbers was 1.26, very close to that of 1.29 reported previously for FliM. We also measured the exchange of FliN molecules, which had a time scale and dependence upon rotation direction similar to those of FliM, consistent with an exchange of FliM-FliN as a unit. Our work confirms the highly dynamic nature of multimeric protein complexes and indicates that, under physiological conditions, these machines might not be the stable, complete structures suggested by averaged fixed methodologies but, rather, incomplete rings that can respond and adapt to changing environments.IMPORTANCEThe flagellum is one of the most complex structures in a bacterial cell, with the core motor proteins conserved across species. Evidence is now emerging that turnover of some of these motor proteins depends on motor activity, suggesting that turnover is important for function. The switch complex transmits the chemosensory signal to the rotor, and we show, by using single-cell measurement, that both the copy number and the fraction of exchanging molecules vary with the rotational bias of the rotor. When the motor is locked in counterclockwise rotation, the copy number is similar to that determined by averaged, fixed methodologies, but when locked in a clockwise direction, the number is much lower, suggesting that that the switch complex ring is incomplete. Our results suggest that motor remodeling is an important component in tuning responses and adaptation at the motor.


mSphere ◽  
2017 ◽  
Vol 2 (4) ◽  
Author(s):  
Hélène Tournu ◽  
Arturo Luna-Tapia ◽  
Brian M. Peters ◽  
Glen E. Palmer

ABSTRACT Candida albicans is an opportunistic fungal pathogen that colonizes the reproductive and gastrointestinal tracts of its human host. It can also invade the bloodstream and deeper organs of immunosuppressed individuals, and thus it encounters enormous variations in external pH in vivo. Accordingly, survival within such diverse niches necessitates robust adaptive responses to regulate intracellular pH. However, the impact of antifungal drugs upon these adaptive responses, and on intracellular pH in general, is not well characterized. Furthermore, the tools and methods currently available to directly monitor intracellular pH in C. albicans, as well as other fungal pathogens, have significant limitations. To address these issues, we developed a new and improved set of pH sensors based on the pH-responsive fluorescent protein pHluorin. This includes a cytoplasmic sensor, a probe that localizes inside the fungal vacuole (an acidified compartment that plays a central role in intracellular pH homeostasis), and a cell surface probe that can detect changes in extracellular pH. These tools can be used to monitor pH within single C. albicans cells or in cell populations in real time through convenient and high-throughput assays. Environmental or chemically induced stresses often trigger physiological responses that regulate intracellular pH. As such, the capacity to detect pH changes in real time and within live cells is of fundamental importance to essentially all aspects of biology. In this respect, pHluorin, a pH-sensitive variant of green fluorescent protein, has provided an invaluable tool to detect such responses. Here, we report the adaptation of pHluorin2 (PHL2), a substantially brighter variant of pHluorin, for use with the human fungal pathogen Candida albicans. As well as a cytoplasmic PHL2 indicator, we describe a version that specifically localizes within the fungal vacuole, an acidified subcellular compartment with important functions in nutrient storage and pH homeostasis. In addition, by means of a glycophosphatidylinositol-anchored PHL2-fusion protein, we generated a cell surface pH sensor. We demonstrated the utility of these tools in several applications, including accurate intracellular and extracellular pH measurements in individual cells via flow cytometry and in cell populations via a convenient plate reader-based protocol. The PHL2 tools can also be used for endpoint as well as time course experiments and to conduct chemical screens to identify drugs that alter normal pH homeostasis. These tools enable observation of the highly dynamic intracellular pH shifts that occur throughout the fungal growth cycle, as well as in response to various chemical treatments. IMPORTANCE Candida albicans is an opportunistic fungal pathogen that colonizes the reproductive and gastrointestinal tracts of its human host. It can also invade the bloodstream and deeper organs of immunosuppressed individuals, and thus it encounters enormous variations in external pH in vivo. Accordingly, survival within such diverse niches necessitates robust adaptive responses to regulate intracellular pH. However, the impact of antifungal drugs upon these adaptive responses, and on intracellular pH in general, is not well characterized. Furthermore, the tools and methods currently available to directly monitor intracellular pH in C. albicans, as well as other fungal pathogens, have significant limitations. To address these issues, we developed a new and improved set of pH sensors based on the pH-responsive fluorescent protein pHluorin. This includes a cytoplasmic sensor, a probe that localizes inside the fungal vacuole (an acidified compartment that plays a central role in intracellular pH homeostasis), and a cell surface probe that can detect changes in extracellular pH. These tools can be used to monitor pH within single C. albicans cells or in cell populations in real time through convenient and high-throughput assays.


mBio ◽  
2014 ◽  
Vol 5 (4) ◽  
Author(s):  
Piotr Bielecki ◽  
Uthayakumar Muthukumarasamy ◽  
Denitsa Eckweiler ◽  
Agata Bielecka ◽  
Sarah Pohl ◽  
...  

ABSTRACTmRNA profiling of pathogens during the course of human infections gives detailed information on the expression levels of relevant genes that drive pathogenicity and adaptation and at the same time allows for the delineation of phylogenetic relatedness of pathogens that cause specific diseases. In this study, we used mRNA sequencing to acquire information on the expression ofEscherichia colipathogenicity genes during urinary tract infections (UTI) in humans and to assign the UTI-associatedE. coliisolates to different phylogenetic groups. Whereas thein vivogene expression profiles of the majority of genes were conserved among 21E. colistrains in the urine of elderly patients suffering from an acute UTI, the specific gene expression profiles of the flexible genomes was diverse and reflected phylogenetic relationships. Furthermore, genes transcribedin vivorelative to laboratory media included well-described virulence factors, small regulatory RNAs, as well as genes not previously linked to bacterial virulence. Knowledge on relevant transcriptional responses that drive pathogenicity and adaptation of isolates to the human host might lead to the introduction of a virulence typing strategy into clinical microbiology, potentially facilitating management and prevention of the disease.IMPORTANCEUrinary tract infections (UTI) are very common; at least half of all women experience UTI, most of which are caused by pathogenicEscherichia colistrains. In this study, we applied massive parallel cDNA sequencing (RNA-seq) to provide unbiased, deep, and accurate insight into the nature and the dimension of the uropathogenicE. coligene expression profile during an acute UTI within the human host. This work was undertaken to identify key players in physiological adaptation processes and, hence, potential targets for new infection prevention and therapy interventions specifically aimed at sabotaging bacterial adaptation to the human host.


mBio ◽  
2015 ◽  
Vol 6 (2) ◽  
Author(s):  
Robert-Jan Bleichrodt ◽  
Marc Hulsman ◽  
Han A. B. Wösten ◽  
Marcel J. T. Reinders

ABSTRACT Pores in fungal septa enable cytoplasmic streaming between hyphae and their compartments. Consequently, the mycelium can be considered unicellular. However, we show here that Woronin bodies close ~50% of the three most apical septa of growing hyphae of Aspergillus niger. The incidence of closure of the 9th and 10th septa was even ≥94%. Intercompartmental streaming of photoactivatable green fluorescent protein (PA-GFP) was not observed when the septa were closed, but open septa acted as a barrier, reducing the mobility rate of PA-GFP ~500 times. This mobility rate decreased with increasing septal age and under stress conditions, likely reflecting a regulatory mechanism affecting septal pore diameter. Modeling revealed that such regulation offers effective control of compound concentration between compartments. Modeling also showed that the incidence of septal closure in A. niger had an even stronger impact on cytoplasmic continuity. Cytoplasm of hyphal compartments was shown not to be in physical contact when separated by more than 4 septa. Together, data show that apical compartments of growing hyphae behave unicellularly, while older compartments have a multicellular organization. IMPORTANCE The hyphae of higher fungi are compartmentalized by porous septa that enable cytosolic streaming. Therefore, it is believed that the mycelium shares cytoplasm. However, it is shown here that the septa of Aspergillus niger are always closed in the oldest part of the hyphae, and therefore, these compartments are physically isolated from each other. In contrast, only part of the septa is closed in the youngest part of the hyphae. Still, compartments in this hyphal part are physically isolated when separated by more than 4 septa. Even open septa act as a barrier for cytoplasmic mixing. The mobility rate through such septa reduces with increasing septal age and under stress conditions. Modeling shows that the septal pore width is set such that its regulation offers maximal control of compound concentration levels within the compartments. Together, we show for the first time that Aspergillus hyphae switch from a unicellular to multicellular organization.


mSystems ◽  
2020 ◽  
Vol 5 (5) ◽  
Author(s):  
Kaori Motoki ◽  
Tomo-o Watsuji ◽  
Yoshihiro Takaki ◽  
Ken Takai ◽  
Wataru Iwasaki

ABSTRACT Shinkaia crosnieri is an invertebrate that inhabits an area around deep-sea hydrothermal vents in the Okinawa Trough in Japan by harboring episymbiotic microbes as the primary nutrition. To reveal physiology and phylogenetic composition of the active episymbiotic populations, metatranscriptomics is expected to be a powerful approach. However, this has been hindered by substantial perturbation (e.g., RNA degradation) during time-consuming retrieval from the deep sea. Here, we conducted direct metatranscriptomic analysis of S. crosnieri episymbionts by applying in situ RNA stabilization equipment. As expected, we obtained RNA expression profiles that were substantially different from those obtained by conventional metatranscriptomics (i.e., stabilization after retrieval). The episymbiotic community members were dominated by three orders, namely, Thiotrichales, Methylococcales, and Campylobacterales, and the Campylobacterales members were mostly dominated by the Sulfurovum genus. At a finer phylogenetic scale, the episymbiotic communities on different host individuals shared many species, indicating that the episymbionts on each host individual are not descendants of a few founder cells but are horizontally exchanged. Furthermore, our analysis revealed the key metabolisms of the community: two carbon fixation pathways, a formaldehyde assimilation pathway, and utilization of five electron donors (sulfide, thiosulfate, sulfur, methane, and ammonia) and two electron accepters (oxygen and nitrate/nitrite). Importantly, it was suggested that Thiotrichales episymbionts can utilize intercellular sulfur globules even when sulfur compounds are not usable, possibly also in a detached and free-living state. IMPORTANCE Deep-sea hydrothermal vent ecosystems remain mysterious. To depict in detail the enigmatic life of chemosynthetic microbes, which are key primary producers in these ecosystems, metatranscriptomic analysis is expected to be a promising approach. However, this has been hindered by substantial perturbation (e.g., RNA degradation) during time-consuming retrieval from the deep sea. In this study, we conducted direct metatranscriptome analysis of microbial episymbionts of deep-sea squat lobsters (Shinkaia crosnieri) by applying in situ RNA stabilization equipment. Compared to conventional metatranscriptomics (i.e., RNA stabilization after retrieval), our method provided substantially different RNA expression profiles. Moreover, we discovered that S. crosnieri and its episymbiotic microbes constitute complex and resilient ecosystems, where closely related but various episymbionts are stably maintained by horizontal exchange and partly by their sulfur storage ability for survival even when sulfur compounds are not usable, likely also in a detached and free-living state.


Genes ◽  
2020 ◽  
Vol 11 (12) ◽  
pp. 1412
Author(s):  
Ruchi Bansal ◽  
Nitika Rana ◽  
Akshay Singh ◽  
Pallavi Dhiman ◽  
Rushil Mandlik ◽  
...  

Metacaspases (MCs), a class of cysteine-dependent proteases found in plants, fungi, and protozoa, are predominately involved in programmed cell death processes. In this study, we identified metacaspase genes in cultivated and wild rice species. Characterization of metacaspase genes identified both in cultivated subspecies of Oryza sativa, japonica, and indica and in nine wild rice species was performed. Extensive computational analysis was conducted to understand gene structures, phylogenetic relationships, cis-regulatory elements, expression patterns, and haplotypic variations. Further, the haplotyping study of metacaspase genes was conducted using the whole-genome resequencing data publicly available for 4726 diverse genotype and in-house resequencing data generated for north-east Indian rice lines. Sequence variations observed among wild and cultivated rice species for metacaspase genes were used to understand the duplication and neofunctionalization events. The expression profiles of metacaspase genes were analyzed using RNA-seq transcriptome profiling in rice during different developmental stages and stress conditions. Real-time quantitative PCR analysis of candidate metacaspase genes in rice cultivars Pusa Basmati-1 in response to Magnaporthe oryzae infection indicated a significant role in the disease resistance mechanism. The information provided here will help to understand the evolution of metacaspases and their role under stress conditions in rice.


Blood ◽  
2011 ◽  
Vol 118 (21) ◽  
pp. 2361-2361
Author(s):  
Hui Yu ◽  
Sheng Zhou ◽  
Geoffrey A. Neale ◽  
Brian P. Sorrentino

Abstract Abstract 2361 HOXB4 is a homeobox transcription factor that can induce hematopoietic stem cell (HSC) expansion both in vivo and in vitro. An interesting feature of HOXB4-induced HSC expansion is that HSC numbers do not exceed normal levels in vivo due to an unexplained physiological capping mechanism. To gain further insight into HOXB4 regulatory signals, we transplanted mice with bone marrow cells that had been transduced with a MSCV-HOXB4-ires-YFP vector and analyzed gene expression profiles in HSC-enriched populations 20 weeks after transplant, a time point at which HSC numbers have expanded to normal levels but no longer increasing beyond physiologic levels. We used Affymetrix arrays to analyze gene expression profiles in bone marrow cells sorted for a Lin−Sca-1+c-Kit+ (LSK), YFP+ phenotype. Using ANOVA, we identified1985 probe sets with >2 fold difference in expression (FDR<, 0.1) relative to a control vector-transduced LSK cells. A cohort of genes was identified that were known positive regulators of HSC self-renewal and proliferation. Hemgn, which we identified in a previous screen as a positive regulator of expansion and a direct transcriptional target of HOXB4, was 3.5 fold up-regulated in HOXB4 transduced LSKs. Other genes known to be important for HSCs survival, self-renewal and differentiation were upregulated to significant levels including N-myc, Meis1, Hoxa9, Hoxa10 and GATA2. Microarray data for selected genes was validated by quantitative real-time PCR on HOXB4 transduced CD34low LSK cells, a highly purified HSC population, obtained from another set of transplanted mice at the 20 week time point. In contrast, other gene expression changes were noted that would potentially limit or decrease stem cell numbers. PRDM16, a set domain transcription factor critical for HSC maintenance and associated with clonal hematopoietic expansions when inadvertently activated as a result of retroviral insertion, was dramatically down-regulated on the expression array and 7.6 fold decreased in the real time PCR assay of CD34low LSK cells. TFG-beta signaling is a well defined inhibitor HSC proliferation and utilize Smad proteins as downstream effectors. Expression of Smad1 and Smad7 were significantly upregulated on the LSK expression array and 8.1 and 3.5 fold up-regulated by qPCR in CD34low LSK cells. Another potential counter-regulatory signal was down regulation of Bcl3 mRNA, a potential anti-apoptotic effector in HSCs. We hypothesize that the HOXB4 expansion program involves activation of genes that lead to increased HSC numbers with later activation of counter-regulatory signals that limit expansion to physiologic numbers of HSCs in vivo. We are now examining how this program changes at various time points after transplantation and hypothesize the capping limits are set at relatively later time points during reconstitution. We also are studying the functional effects of these gene expression changes, and in particular, whether enforced expression of HOXB4 and PRMD16 will result in uncontrolled HSC proliferation and/or leukemia. Disclosures: No relevant conflicts of interest to declare.


2016 ◽  
Vol 60 (10) ◽  
pp. 6294-6301 ◽  
Author(s):  
Breana Pabst ◽  
Betsey Pitts ◽  
Ellen Lauchnor ◽  
Philip S. Stewart

ABSTRACTAn experimental model that mimicked the structure and characteristics ofin vivobiofilm infections, such as those occurring in the lung or in dermal wounds where no biomaterial surface is present, was developed. In these infections, microbial biofilm forms as cell aggregates interspersed in a layer of mucus or host matrix material. This structure was modeled by filling glass capillary tubes with an agarose gel that had been seeded withStaphylococcus aureusbacteria and then incubating the gel biofilm in medium for up to 30 h. Confocal microscopy showed that the bacteria formed in discrete pockets distributed throughout the gel matrix. These aggregates enlarged over time and also developed a size gradient, with the clusters being larger near the nutrient- and oxygen-supplied interface and smaller at greater depths. Bacteria entrapped in gels for 24 h grew slowly (specific growth rate, 0.06 h−1) and were much less susceptible to oxacillin, minocycline, or ciprofloxacin than planktonic cells. Microelectrode measurements showed that the oxygen concentration decreased with depth into the gel biofilm, falling to values less than 3% of air saturation at depths of 500 μm. An anaerobiosis-responsive green fluorescent protein reporter gene for lactate dehydrogenase was induced in the region of the gel where the measured oxygen concentrations were low, confirming biologically relevant hypoxia. These results show that the gel biofilm model captures key features of biofilm infection in mucus or compromised tissue: formation of dense, distinct aggregates, reduced specific growth rates, local hypoxia, and antibiotic tolerance.


2013 ◽  
Vol 79 (23) ◽  
pp. 7351-7359 ◽  
Author(s):  
Aleksandra W. Debowski ◽  
Phebe Verbrugghe ◽  
Miriam Sehnal ◽  
Barry James Marshall ◽  
Mohammed Benghezal

ABSTRACTDeletion mutants and animal models have been instrumental in the study ofHelicobacter pyloripathogenesis. Conditional mutants, however, would enable the study of the temporal gene requirement duringH. pyloricolonization and chronic infection. To achieve this goal, we adapted theEscherichia coliTn10-derived tetracycline-inducible expression system for use inH. pylori. TheureApromoter was modified by inserting one or twotetoperators to generate tetracycline-responsive promoters, nameduPtetO, and these promoters were then fused to the reportergfpmut2 and inserted into different loci. The expression of the tetracycline repressor (tetR) was placed under the control of one of three promoters and inserted into the chromosome. Conditional expression of green fluorescent protein (GFP) in strains harboringtetRanduPtetO-GFPwas characterized by measuring GFP activity and by immunoblotting. The twotet-responsiveuPtetOpromoters differ in strength, and induction of these promoters was inducer concentration and time dependent, with maximum expression achieved after induction for 8 to 16 h. Furthermore, the chromosomal location of theuPtetO-GFPconstruct and the nature of the promoter driving expression oftetRinfluenced the strength of theuPtetOpromoters upon induction. Integration ofuPtetO-GFPandtetRconstructs at different genomic loci was stablein vivoand did not affect colonization. Finally, we demonstrate tetracycline-dependent induction of GFP expressionin vivoduring chronic infection. These results open new experimental avenues for dissectingH. pyloripathogenesis using animal models and for testing the roles of specific genes in colonization of, adaptation to, and persistence in the host.


Sign in / Sign up

Export Citation Format

Share Document