scholarly journals Functional Analysis ofycfRandycfQin Escherichia coli O157:H7 Linked to Outbreaks of Illness Associated with Fresh Produce

2011 ◽  
Vol 77 (12) ◽  
pp. 3952-3959 ◽  
Author(s):  
Kaiping Deng ◽  
Siyun Wang ◽  
Xiaoqian Rui ◽  
Wei Zhang ◽  
Mary Lou Tortorello

ABSTRACTFresh produce has been associated with multiple outbreaks of illness caused byEscherichia coliO157:H7. The mechanism ofE. coliO157:H7 survival through postharvest processing of fresh produce needs to be understood to help develop more effective interventions. In our recent transcriptomic study of strain Sakai, an isolate from the 1996 sprout outbreak in Japan, and strain TW14359, an isolate from the 2006 spinach outbreak in the United States, we showed thatycfRwas the most significantly upregulated gene in response to chlorine-based oxidative stress. YcfR is known to be a multiple stress resistance protein and a biofilm regulator inE. coliK-12 strains; however, its role in the pathogenicE. coliO157:H7 has not been clearly defined. In this study,ycfRwas replaced with a chloramphenicol resistance cassette oriented in two different directions to construct polar and nonpolarycfR::catmutants of Sakai and TW14359. Chlorine resistance and survival on spinach leaf surfaces were assessed in the wild-type strains and theycfRmutants. Both polar and nonpolarycfRmutants of Sakai showed significantly less chlorine resistance than their parent strain. In contrast, deletion ofycfRin TW14359 did not change chlorine resistance, indicating thatycfRin these two outbreak-relatedE. coliO157:H7 strains may function differently. In addition, after a 24-h incubation on spinach leaves in a sublethal concentration of chlorine, the Sakai nonpolarycfRmutant exhibited lower survival compared to the wild type. The results suggest a role forycfRin survival of Sakai during chlorine exposure. We also found that the upstreamycfQ, which is annotated as a DNA-binding regulator, acted as a repressor ofycfR. These findings suggest that gene regulation may be a mechanism by whichE. coliO157:H7 strain Sakai could survive in the postharvest processing environment.

2017 ◽  
Vol 83 (16) ◽  
Author(s):  
Jay N. Worley ◽  
Kristopher A. Flores ◽  
Xun Yang ◽  
Jennifer A. Chase ◽  
Guojie Cao ◽  
...  

ABSTRACT Escherichia coli serotype O157:H7 is a zoonotic food- and waterborne bacterial pathogen that causes a high hospitalization rate and can cause life-threatening complications. Increasingly, E. coli O157:H7 infections appear to originate from fresh produce. Ruminants, such as cattle, are a prominent reservoir of E. coli O157:H7 in the United States. California is one of the most agriculturally productive regions in the world for fresh produce, beef, and milk. The close proximity of fresh produce and cattle presents food safety challenges on a uniquely large scale. We performed a survey of E. coli O157:H7 on 20 farms in California to observe the regional diversity and prevalence of E. coli O157:H7. Isolates were obtained from enrichment cultures of cow feces. Some farms were sampled on two dates. Genomes from isolates were sequenced to determine their relatedness and pathogenic potential. E. coli O157:H7 was isolated from approximately half of the farms. The point prevalence of E. coli O157:H7 on farms was highly variable, ranging from zero to nearly 90%. Within farms, generally one or a few lineages were found, even when the rate of isolation was high. On farms with high isolation rates, a single clonal lineage accounted for most of the isolates. Farms that were visited months after the first visit might have had the same lineages of E. coli O157:H7. Strains of E. coli O157:H7 may be persistent for months on farms. IMPORTANCE This survey of 20 cow-calf operations from different regions of California provides an in depth look at resident Escherichia coli O157:H7 populations at the molecular level. E. coli O157:H7 is found to have a highly variable prevalence, and with whole-genome sequencing, high prevalences in herds were found to be due to a single lineage shed from multiple cows. Few repeat lineages were found between farms in this area; therefore, we predict that E. coli O157:H7 has significant diversity in this area beyond what is detected in this survey. All isolates from this study were found to have pathogenic potential based on the presence of key virulence gene sequences. This represents a novel insight into pathogen diversity within a single subtype and will inform future attempts to survey regional pathogen populations.


2013 ◽  
Vol 79 (20) ◽  
pp. 6362-6368 ◽  
Author(s):  
Ying Xu ◽  
Bing Chen ◽  
Hongjun Chao ◽  
Ning-Yi Zhou

ABSTRACTEscherichia coliK-12 utilizes 3-(3-hydroxyphenyl)propionate (3HPP) as a sole carbon and energy source. Among the genes in its catabolic cluster in the genome,mhpTwas proposed to encode a hypothetical transporter. Since no transporter for 3HPP uptake has been identified, we investigated whether MhpT is responsible for 3HPP uptake. MhpT fused with green fluorescent protein was found to be located at the periphery of cells by confocal microscopy, consistent with localization to the cytoplasmic membrane. Gene knockout and complementation studies clearly indicated thatmhpTis essential for 3HPP catabolism inE. coliK-12 W3110 at pH 8.2. Uptake assays with14C-labeled substrates demonstrated that strain W3110 and strain W3110ΔmhpTcontaining recombinant MhpT specifically transported 3HPP but not benzoate, 3-hydroxybenzoate, or gentisate into cells. Energy dependence assays suggested that MhpT-mediated 3HPP transport was driven by the proton motive force. The change of Ala-272 of MhpT to a histidine, surprisingly, resulted in enhanced transport activity, and strain W3110ΔmhpTcontaining the MhpT A272H mutation had a slightly higher growth rate than the wild-type strain at pH 8.2. Hence, we demonstrated that MhpT is a specific 3HPP transporter and vital forE. coliK-12 W3110 growth on this substrate under basic conditions.


2012 ◽  
Vol 80 (12) ◽  
pp. 4123-4132 ◽  
Author(s):  
Megan E. Lau ◽  
Jennifer A. Loughman ◽  
David A. Hunstad

ABSTRACTUropathogenicEscherichia coli(UPEC) strains suppress the acute inflammatory response in the urinary tract to ensure access to the intracellular uroepithelial niche that supports the propagation of infection. Our understanding of this initial cross talk between host and pathogen is incomplete. Here we report the identification of a previously uncharacterized periplasmic protein, YbcL, encoded by UPEC that contributes to immune modulation in the urinary tract by suppressing acute neutrophil migration. In contrast to wild-type UPEC, an isogenic strain lackingybcLexpression (UTI89 ΔybcL) failed to suppress transepithelial polymorphonuclear leukocyte (PMN) migrationin vitro, a defect complemented by expressingybcLepisomally. YbcL homologs are present in manyE. coligenomes; expression of the YbcL variant encoded by nonpathogenicE. coliK-12 strain MG1655 (YbcLMG) failed to complement the UTI89 ΔybcLdefect, whereas expression of the UPEC YbcL variant (YbcLUTI) in MG1655 conferred the capacity for suppressing PMN migration. This phenotypic difference was due to a single amino acid difference (V78T) between the two YbcL homologs, and a majority of clinical UPEC strains examined were found to encode the suppressive YbcL variant. Purified YbcLUTIprotein suppressed PMN migration in response to live or killed MG1655, and YbcLUTIwas detected in the supernatant during UPEC infection of bladder epithelial cells or PMNs. Lastly, early PMN influx to murine bladder tissue was augmented uponin vivoinfection with UTI89 ΔybcLcompared with wild-type UPEC. Our findings demonstrate a role for UPEC YbcL in suppression of the innate immune response during urinary tract infection.


2011 ◽  
Vol 79 (6) ◽  
pp. 2430-2439 ◽  
Author(s):  
Andrew J. Fabich ◽  
Mary P. Leatham ◽  
Joe E. Grissom ◽  
Graham Wiley ◽  
Hongshing Lai ◽  
...  

ABSTRACTWe previously isolated a spontaneous mutant ofEscherichia coliK-12, strain MG1655, following passage through the streptomycin-treated mouse intestine, that has colonization traits superior to the wild-type parent strain (M. P. Leatham et al., Infect. Immun.73:8039–8049, 2005). This intestine-adapted strain (E. coliMG1655*) grew faster on several different carbon sources than the wild type and was nonmotile due to deletion of theflhDgene. We now report the results of several high-throughput genomic analysis approaches to further characterizeE. coliMG1655*. Whole-genome pyrosequencing did not reveal any changes on its genome, aside from the deletion at theflhDClocus, that could explain the colonization advantage ofE. coliMG1655*. Microarray analysis revealed modest yet significant induction of catabolic gene systems across the genome in bothE. coliMG1655* and an isogenicflhDmutant constructed in the laboratory. Catabolome analysis with Biolog GN2 microplates revealed an enhanced ability of bothE. coliMG1655* and the isogenicflhDmutant to oxidize a variety of carbon sources. The results show that intestine-adaptedE. coliMG1655* is more fit than the wild type for intestinal colonization, because loss of FlhD results in elevated expression of genes involved in carbon and energy metabolism, resulting in more efficient carbon source utilization and a higher intestinal population. Hence, mutations that enhance metabolic efficiency confer a colonization advantage.


2012 ◽  
Vol 79 (2) ◽  
pp. 478-487 ◽  
Author(s):  
Suriana Sabri ◽  
Lars K. Nielsen ◽  
Claudia E. Vickers

ABSTRACTSucrose is an industrially important carbon source for microbial fermentation. Sucrose utilization inEscherichia coli, however, is poorly understood, and most industrial strains cannot utilize sucrose. The roles of the chromosomally encoded sucrose catabolism (csc) genes inE. coliW were examined by knockout and overexpression experiments. At low sucrose concentrations, thecscgenes are repressed and cells cannot grow. Removal of either the repressor protein (cscR) or the fructokinase (cscK) gene facilitated derepression. Furthermore, combinatorial knockout ofcscRandcscKconferred an improved growth rate on low sucrose. The invertase (cscA) and sucrose transporter (cscB) genes are essential for sucrose catabolism inE. coliW, demonstrating that no other genes can provide sucrose transport or inversion activities. However,cscKis not essential for sucrose utilization. Fructose is excreted into the medium by thecscK-knockout strain in the presence of high sucrose, whereas at low sucrose (when carbon availability is limiting), fructose is utilized by the cell. Overexpression ofcscA,cscAK, orcscABcould complement the WΔcscRKABknockout mutant or confer growth on a K-12 strain which could not naturally utilize sucrose. However, phenotypic stability and relatively good growth rates were observed in the K-12 strain only when overexpressingcscAB, and full growth rate complementation in WΔcscRKABalso requiredcscAB. Our understanding of sucrose utilization can be used to improveE. coliW and engineer sucrose utilization in strains which do not naturally utilize sucrose, allowing substitution of sucrose for other, less desirable carbon sources in industrial fermentations.


2004 ◽  
Vol 72 (12) ◽  
pp. 7030-7039 ◽  
Author(s):  
Eckhard Strauch ◽  
Christoph Schaudinn ◽  
Lothar Beutin

ABSTRACT A bacteriophage encoding the Shiga toxin 2c variant (Stx2c) was isolated from the human Escherichia coli O157 strain CB2851 and shown to form lysogens on the E. coli K-12 laboratory strains C600 and MG1655. Production of Stx2c was found in the wild-type E. coli O157 strain and the K-12 lysogens and was inducible by growing bacteria in the presence of ciprofloxacin. Phage 2851 is the first reported viable bacteriophage which carries an stx 2c gene. Electron micrographs of phage 2851 showed particles with elongated hexagonal heads and long flexible tails resembling phage lambda. Sequence analysis of an 8.4-kb region flanking the stx 2c gene and other genetic elements revealed a mosaic gene structure, as found in other Stx phages. Phage 2851 showed lysis of E. coli K-12 strains lysogenic for Stx phages encoding Stx1 (H19), Stx2 (933W), Stx (7888), and Stx1c (6220) but showed superinfection immunity with phage lambda, presumably originating from the similarity of the cI repressor proteins of both phages. Apparently, phage 2851 integrates at a different chromosomal locus than Stx2 phage 933W and Stx1 phage H19 in E. coli, explaining why Stx2c is often found in combination with Stx1 or Stx2 in E. coli O157 strains. Diagnostic PCR was performed to determine gene sequences specific for phage 2851 in wild-type E. coli O157 strains producing Stx2c. The phage 2851 q and o genes were frequently detected in Stx2c-producing E. coli O157 strains, indicating that phages related to 2851 are associated with Stx2c production in strains of E. coli O157 that were isolated in different locations and time periods.


2012 ◽  
Vol 57 (1) ◽  
pp. 189-195 ◽  
Author(s):  
Migla Miskinyte ◽  
Isabel Gordo

ABSTRACTMutations causing antibiotic resistance usually incur a fitness cost in the absence of antibiotics. The magnitude of such costs is known to vary with the environment. Little is known about the fitness effects of antibiotic resistance mutations when bacteria confront the host's immune system. Here, we study the fitness effects of mutations in therpoB,rpsL, andgyrAgenes, which confer resistance to rifampin, streptomycin, and nalidixic acid, respectively. These antibiotics are frequently used in the treatment of bacterial infections. We measured two important fitness traits—growth rate and survival ability—of 12Escherichia coliK-12 strains, each carrying a single resistance mutation, in the presence of macrophages. Strikingly, we found that 67% of the mutants survived better than the susceptible bacteria in the intracellular niche of the phagocytic cells. In particular, allE. colistreptomycin-resistant mutants exhibited an intracellular advantage. On the other hand, 42% of the mutants incurred a high fitness cost when the bacteria were allowed to divide outside of macrophages. This study shows that single nonsynonymous changes affecting fundamental processes in the cell can contribute to prolonged survival ofE. coliin the context of an infection.


mSphere ◽  
2019 ◽  
Vol 4 (4) ◽  
Author(s):  
Kelvin G. K. Goh ◽  
Danilo G. Moriel ◽  
Steven J. Hancock ◽  
Minh-Duy Phan ◽  
Mark A. Schembri

ABSTRACT Proteins secreted by the type V secretion system possess multiple functions, including the capacity to mediate adhesion, aggregation, and biolfilm formation. The type V secretion system can be divided into five subclasses, one of which is the type Ve system. Proteins of the type Ve secretion system are also referred to as inverse autotransporters (IATs). In this study, we performed an in silico analysis of 126 completely sequenced Escherichia coli genomes available in the NCBI database and identified several distinct IAT-encoding gene families whose distribution varied throughout the E. coli phylogeny. The genes included three characterized IATs (intimin, fdeC, and yeeJ) and four uncharacterized IATs (here named iatA, iatB, iatC, and iatD). The four iat genes were cloned from the completely sequenced environmental E. coli strain SMS-3-5 and characterized. Three of these IAT proteins (IatB, IatC, and IatD) were expressed at the cell surface and possessed the capacity to mediate biofilm formation in a recombinant E. coli K-12 strain. Further analysis of the iatB gene, which showed a unique association with extraintestinal E. coli strains, suggested that its regulation is controlled by the LeuO global regulator. Overall, this study provides new data describing the prevalence, sequence variation, domain structure, function, and regulation of IATs found in E. coli. IMPORTANCE Escherichia coli is one of the most prevalent facultative anaerobes of the human gut. E. coli normally exists as a harmless commensal but can also cause disease following the acquisition of genes that enhance its pathogenicity. Adhesion is an important first step in colonization of the host and is mediated by an array of cell surface components. In E. coli, these include a family of adhesins secreted by the type V secretion system. Here, we identified and characterized new proteins from an emerging subclass of the type V secretion system known as the inverse autotransporters (IATs). We found that IAT-encoding genes are present in a wide range of strains and showed that three novel IATs were localized on the E. coli cell surface and mediated biofilm formation. Overall, this study provides new insight into the prevalence, function, and regulation of IATs in E. coli.


2017 ◽  
Vol 83 (6) ◽  
Author(s):  
James R. Johnson ◽  
Stephen B. Porter ◽  
Brian Johnston ◽  
Paul Thuras ◽  
Sarah Clock ◽  
...  

ABSTRACT Chicken meat products are hypothesized to be vehicles for transmitting antimicrobial-resistant and extraintestinal pathogenic Escherichia coli (ExPEC) to consumers. To reassess this hypothesis in the current era of heightened concerns about antimicrobial use in food animals, we analyzed 175 chicken-source E. coli isolates from a 2013 Consumer Reports national survey. Isolates were screened by PCR for ExPEC-defining virulence genes. The 25 ExPEC isolates (12% of 175) and a 2:1 randomly selected set of 50 non-ExPEC isolates were assessed for their phylogenetic/clonal backgrounds and virulence genotypes for comparison with their resistance profiles and the claims on the retail packaging label (“organic,” “no antibiotics,” and “natural”). Compared with the findings for non-ExPEC isolates, the group of ExPEC isolates had a higher prevalence of phylogroup B2 isolates (44% versus 4%; P < 0.001) and a lower prevalence of phylogroup A isolates (4% versus 30%; P = 0.001), a higher prevalence of multiple individual virulence genes, higher virulence scores (median, 11 [range, 4 to 16] versus 8 [range, 1 to 14]; P = 0.001), and higher resistance scores (median, 4 [range, 0 to 8] versus 3 [range, 0 to 10]; P < 0.001). All five isolates of sequence type 131 (ST131) were ExPEC (P = 0.003), were as extensively resistant as the other isolates tested, and had higher virulence scores than the other isolates tested (median, 12 [range, 11 to 13] versus 8 [range, 1 to 16]; P = 0.005). Organic labeling predicted lower resistance scores (median, 2 [range, 0 to 3] versus 4 [range, 0 to 10]; P = 0.008) but no difference in ExPEC status or virulence scores. These findings document a persisting reservoir of extensively antimicrobial-resistant ExPEC isolates, including isolates from ST131, in retail chicken products in the United States, suggesting a potential public health threat. IMPORTANCE We found that among Escherichia coli isolates from retail chicken meat products purchased across the United States in 2013 (many of these isolates being extensively antibiotic resistant), a minority had genetic profiles suggesting an ability to cause extraintestinal infections in humans, such as urinary tract infection, implying a risk of foodborne disease. Although isolates from products labeled “organic” were less extensively antibiotic resistant than other isolates, they did not appear to be less virulent. These findings suggest that retail chicken products in the United States, even if they are labeled “organic,” pose a potential health threat to consumers because they are contaminated with extensively antibiotic-resistant and, presumably, virulent E. coli isolates.


2006 ◽  
Vol 74 (8) ◽  
pp. 4685-4693 ◽  
Author(s):  
Haiqing Sheng ◽  
Ji Youn Lim ◽  
Hannah J. Knecht ◽  
Jie Li ◽  
Carolyn J. Hovde

ABSTRACT The human pathogen Escherichia coli O157:H7 causes hemorrhagic colitis and life-threatening sequelae and transiently colonizes healthy cattle at the terminal rectal mucosa. This study analyzed virulence factors important for the clinical manifestations of human E. coli O157:H7 infection for their contribution to the persistence of E. coli in cattle. The colonizing ability of E. coli O157:H7 was compared with those of nonpathogenic E. coli K-12 and isogenic deletion mutants missing Shiga toxin (Stx), the adhesin intimin, its receptor Tir, hemolysin, or the ∼92-kb pO157. Fully ruminant steers received a single rectal application of one E. coli strain so that effects of mucosal attachment and survival at the terminal rectum could be measured without the impact of bacterial passage through the entire gastrointestinal tract. Colonization was monitored by sensitive recto-anal junction mucosal swab culture. Nonpathogenic E. coli K-12 did not colonize as well as E. coli O157:H7 at the bovine terminal rectal mucosa. The E. coli O157:H7 best able to persist had intimin, Tir, and the pO157. Strains missing even one of these factors were recovered in lower numbers and were cleared faster than the wild type. In contrast, E. coli O157:H7 strains that were missing Stx or hemolysin colonized like the wild type. For these three strains, the number of bacteria increased between days 1 and 4 postapplication and then decreased slowly. In contrast, the numbers of noncolonizing strains (K-12, Δtir, and Δeae) decreased from the day of application. These patterns consistently predicted long-term colonization or clearance of the bacteria from the bovine terminal rectal mucosa.


Sign in / Sign up

Export Citation Format

Share Document