Functional Analysis ofycfRandycfQin Escherichia coli O157:H7 Linked to Outbreaks of Illness Associated with Fresh Produce
ABSTRACTFresh produce has been associated with multiple outbreaks of illness caused byEscherichia coliO157:H7. The mechanism ofE. coliO157:H7 survival through postharvest processing of fresh produce needs to be understood to help develop more effective interventions. In our recent transcriptomic study of strain Sakai, an isolate from the 1996 sprout outbreak in Japan, and strain TW14359, an isolate from the 2006 spinach outbreak in the United States, we showed thatycfRwas the most significantly upregulated gene in response to chlorine-based oxidative stress. YcfR is known to be a multiple stress resistance protein and a biofilm regulator inE. coliK-12 strains; however, its role in the pathogenicE. coliO157:H7 has not been clearly defined. In this study,ycfRwas replaced with a chloramphenicol resistance cassette oriented in two different directions to construct polar and nonpolarycfR::catmutants of Sakai and TW14359. Chlorine resistance and survival on spinach leaf surfaces were assessed in the wild-type strains and theycfRmutants. Both polar and nonpolarycfRmutants of Sakai showed significantly less chlorine resistance than their parent strain. In contrast, deletion ofycfRin TW14359 did not change chlorine resistance, indicating thatycfRin these two outbreak-relatedE. coliO157:H7 strains may function differently. In addition, after a 24-h incubation on spinach leaves in a sublethal concentration of chlorine, the Sakai nonpolarycfRmutant exhibited lower survival compared to the wild type. The results suggest a role forycfRin survival of Sakai during chlorine exposure. We also found that the upstreamycfQ, which is annotated as a DNA-binding regulator, acted as a repressor ofycfR. These findings suggest that gene regulation may be a mechanism by whichE. coliO157:H7 strain Sakai could survive in the postharvest processing environment.