scholarly journals Effects of Low-Shear Modeled Microgravity on Cell Function, Gene Expression, and Phenotype in Saccharomyces cerevisiae

2006 ◽  
Vol 72 (7) ◽  
pp. 4569-4575 ◽  
Author(s):  
B. Purevdorj-Gage ◽  
K. B. Sheehan ◽  
L. E. Hyman

ABSTRACT Only limited information is available concerning the effects of low-shear modeled microgravity (LSMMG) on cell function and morphology. We examined the behavior of Saccharomyces cerevisiae grown in a high-aspect-ratio vessel, which simulates the low-shear and microgravity conditions encountered in spaceflight. With the exception of a shortened lag phase (90 min less than controls; P < 0.05), yeast cells grown under LSMMG conditions did not differ in growth rate, size, shape, or viability from the controls but did differ in the establishment of polarity as exhibited by aberrant (random) budding compared to the usual bipolar pattern of controls. The aberrant budding was accompanied by an increased tendency of cells to clump, as indicated by aggregates containing five or more cells. We also found significant changes (greater than or equal to twofold) in the expression of genes associated with the establishment of polarity (BUD5), bipolar budding (RAX1, RAX2, and BUD25), and cell separation (DSE1, DSE2, and EGT2). Thus, low-shear environments may significantly alter yeast gene expression and phenotype as well as evolutionary conserved cellular functions such as polarization. The results provide a paradigm for understanding polarity-dependent cell responses to microgravity ranging from pathogenesis in fungi to the immune response in mammals.

Genes ◽  
2021 ◽  
Vol 12 (2) ◽  
pp. 219
Author(s):  
Il-Sup Kim ◽  
Woong Choi ◽  
Jonghyeon Son ◽  
Jun Hyuck Lee ◽  
Hyoungseok Lee ◽  
...  

The cryoprotection of cell activity is a key determinant in frozen-dough technology. Although several factors that contribute to freezing tolerance have been reported, the mechanism underlying the manner in which yeast cells respond to freezing and thawing (FT) stress is not well established. Therefore, the present study demonstrated the relationship between DaMDHAR encoding monodehydroascorbate reductase from Antarctic hairgrass Deschampsia antarctica and stress tolerance to repeated FT cycles (FT2) in transgenic yeast Saccharomyces cerevisiae. DaMDHAR-expressing yeast (DM) cells identified by immunoblotting analysis showed high tolerance to FT stress conditions, thereby causing lower damage for yeast cells than wild-type (WT) cells with empty vector alone. To detect FT2 tolerance-associated genes, 3′-quant RNA sequencing was employed using mRNA isolated from DM and WT cells exposed to FT (FT2) conditions. Approximately 332 genes showed ≥2-fold changes in DM cells and were classified into various groups according to their gene expression. The expressions of the changed genes were further confirmed using western blot analysis and biochemical assay. The upregulated expression of 197 genes was associated with pentose phosphate pathway, NADP metabolic process, metal ion homeostasis, sulfate assimilation, β-alanine metabolism, glycerol synthesis, and integral component of mitochondrial and plasma membrane (PM) in DM cells under FT2 stress, whereas the expression of the remaining 135 genes was partially related to protein processing, selenocompound metabolism, cell cycle arrest, oxidative phosphorylation, and α-glucoside transport under the same condition. With regard to transcription factors in DM cells, MSN4 and CIN5 were activated, but MSN2 and MGA1 were not. Regarding antioxidant systems and protein kinases in DM cells under FT stress, CTT1, GTO, GEX1, and YOL024W were upregulated, whereas AIF1, COX2, and TRX3 were not. Gene activation represented by transcription factors and enzymatic antioxidants appears to be associated with FT2-stress tolerance in transgenic yeast cells. RCK1, MET14, and SIP18, but not YPK2, have been known to be involved in the protein kinase-mediated signalling pathway and glycogen synthesis. Moreover, SPI18 and HSP12 encoding hydrophilin in the PM were detected. Therefore, it was concluded that the genetic network via the change of gene expression levels of multiple genes contributing to the stabilization and functionality of the mitochondria and PM, not of a single gene, might be the crucial determinant for FT tolerance in DaMDAHR-expressing transgenic yeast. These findings provide a foundation for elucidating the DaMDHAR-dependent molecular mechanism of the complex functional resistance in the cellular response to FT stress.


1987 ◽  
Vol 7 (8) ◽  
pp. 2914-2924
Author(s):  
A Hoekema ◽  
R A Kastelein ◽  
M Vasser ◽  
H A de Boer

The coding sequences of genes in the yeast Saccharomyces cerevisiae show a preference for 25 of the 61 possible coding triplets. The degree of this biased codon usage in each gene is positively correlated to its expression level. Highly expressed genes use these 25 major codons almost exclusively. As an experimental approach to studying biased codon usage and its possible role in modulating gene expression, systematic codon replacements were carried out in the highly expressed PGK1 gene. The expression of phosphoglycerate kinase (PGK) was studied both on a high-copy-number plasmid and as a single copy gene integrated into the chromosome. Replacing an increasing number (up to 39% of all codons) of major codons with synonymous minor ones at the 5' end of the coding sequence caused a dramatic decline of the expression level. The PGK protein levels dropped 10-fold. The steady-state mRNA levels also declined, but to a lesser extent (threefold). Our data indicate that this reduction in mRNA levels was due to destabilization caused by impaired translation elongation at the minor codons. By preventing translation of the PGK mRNAs by the introduction of a stop codon 3' and adjacent to the start codon, the steady-state mRNA levels decreased dramatically. We conclude that efficient mRNA translation is required for maintaining mRNA stability in S. cerevisiae. These findings have important implications for the study of the expression of heterologous genes in yeast cells.


mBio ◽  
2019 ◽  
Vol 10 (1) ◽  
Author(s):  
Andy Hesketh ◽  
Marta Vergnano ◽  
Stephen G. Oliver

ABSTRACT Correlations between gene transcription and the abundance of high-energy purine nucleotides in Saccharomyces cerevisiae have often been noted. However, there has been no systematic investigation of this phenomenon in the absence of confounding factors such as nutrient status and growth rate, and there is little hard evidence for a causal relationship. Whether transcription is fundamentally responsive to prevailing cellular energetic conditions via sensing of intracellular purine nucleotides, independently of specific nutrition, remains an important question. The controlled nutritional environment of chemostat culture revealed a strong correlation between ATP and GTP abundance and the transcription of genes required for growth. Short pathways for the inducible and futile consumption of ATP or GTP were engineered into S. cerevisiae, permitting analysis of the transcriptional effect of an increased demand for these nucleotides. During steady-state growth using the fermentable carbon source glucose, the futile consumption of ATP led to a decrease in intracellular ATP concentration but an increase in GTP and the guanylate energy charge (GEC). Expression of transcripts encoding proteins involved in ribosome biogenesis, and those controlled by promoters subject to SWI/SNF-dependent chromatin remodelling, was correlated with these nucleotide pool changes. Similar nucleotide abundance changes were observed using a nonfermentable carbon source, but an effect on the growth-associated transcriptional programme was absent. Induction of the GTP-cycling pathway had only marginal effects on nucleotide abundance and gene transcription. The transcriptional response of respiring cells to glucose was dampened in chemostats induced for ATP cycling, but not GTP cycling, and this was primarily associated with altered adenine nucleotide levels. IMPORTANCE This paper investigates whether, independently of the supply of any specific nutrient, gene transcription responds to the energy status of the cell by monitoring ATP and GTP levels. Short pathways for the inducible and futile consumption of ATP or GTP were engineered into the yeast Saccharomyces cerevisiae, and the effect of an increased demand for these purine nucleotides on gene transcription was analyzed. The resulting changes in transcription were most consistently associated with changes in GTP and GEC levels, although the reprogramming in gene expression during glucose repression is sensitive to adenine nucleotide levels. The results show that GTP levels play a central role in determining how genes act to respond to changes in energy supply and that any comprehensive understanding of the control of eukaryotic gene expression requires the elucidation of how changes in guanine nucleotide abundance are sensed and transduced to alter the global pattern of transcription.


2020 ◽  
Vol 318 (6) ◽  
pp. L1261-L1269 ◽  
Author(s):  
Andrew J. Goodwin ◽  
Pengfei Li ◽  
Perry V. Halushka ◽  
James A. Cook ◽  
Aman S. Sumal ◽  
...  

Circulating microRNAs (miRNAs) can be taken up by recipient cells and have been recently associated with the acute respiratory distress syndrome (ARDS). Their role in host predisposition to the syndrome is unknown. The objective of the study was to identify circulating miRNAs associated with the development of sepsis-related ARDS and examine their impact on endothelial cell gene expression and function. We determined miRNA levels in plasma collected from subjects during the first 24 h of admission to a tertiary intensive care unit for sepsis. A miRNA that was differentially expressed between subjects who did and did not develop ARDS was identified and was transfected into human pulmonary microvascular endothelial cells (HPMECs). RNA sequencing, in silico analysis, cytokine expression, and leukocyte migration assays were used to determine the impact of this miRNA on gene expression and cell function. In two cohorts, circulating miR-887-3p levels were elevated in septic patients who developed ARDS compared with those who did not. Transfection of miR-887-3p into HPMECs altered gene expression, including the upregulation of several genes previously associated with ARDS (e.g., CXCL10, CCL5, CX3CL1, VCAM1, CASP1, IL1B, IFNB, and TLR2), and activation of cellular pathways relevant to the response to infection. Functionally, miR-887-3p increased the endothelial release of chemokines and facilitated trans-endothelial leukocyte migration. Circulating miR-887-3p is associated with ARDS in critically ill patients with sepsis. In vitro, miR-887-3p regulates the expression of genes relevant to ARDS and neutrophil tracking. This miRNA may contribute to ARDS pathogenesis and could represent a novel therapeutic target.


2008 ◽  
Vol 7 (12) ◽  
pp. 2061-2068 ◽  
Author(s):  
Raymond Wightman ◽  
Rachel Bell ◽  
Richard J. Reece

ABSTRACT In Saccharomyces cerevisiae, the GAL genes encode the enzymes required for galactose metabolism. Regulation of these genes has served as the paradigm for eukaryotic transcriptional control over the last 50 years. The switch between inert and active gene expression is dependent upon three proteins—the transcriptional activator Gal4p, the inhibitor Gal80p, and the ligand sensor Gal3p. Here, we present a detailed spatial analysis of the three GAL regulatory proteins produced from their native genomic loci. Using a novel application of photobleaching, we demonstrate, for the first time, that the Gal3p ligand sensor enters the nucleus of yeast cells in the presence of galactose. Additionally, using Förster resonance energy transfer, we show that the interaction between Gal3p and Gal80p occurs throughout the yeast cell. Taken together, these data challenge existing models for the cellular localization of the regulatory proteins during the induction of GAL gene expression by galactose and suggest a mechanism for the induction of the GAL genes in which galactose-bound Gal3p moves from the cytoplasm to the nucleus to interact with the transcriptional inhibitor Gal80p.


2002 ◽  
Vol 76 (4) ◽  
pp. 1610-1616 ◽  
Author(s):  
B. D. Price ◽  
P. Ahlquist ◽  
L. A. Ball

ABSTRACT To date, the insect nodavirus flock house virus (FHV) is the only virus of a higher eukaryote that has been shown to undergo a full replicative cycle and produce infectious progeny in the yeast Saccharomyces cerevisiae. The genome of FHV is composed of two positive-sense RNA segments: RNA1, encoding the RNA replicase, and RNA2, encoding the capsid protein precursor. When yeast cells expressing FHV RNA replicase were transfected with a chimeric RNA composed of a selectable gene flanked by the termini of RNA2, the chimeric RNA was replicated and transmitted to daughter cells indefinitely. In the work reported here, we developed a system in which a selectable chimeric RNA replicon was transcribed from an inducible RNA polymerase II (polII) promoter in vivo in yeast. To render marker gene expression absolutely dependent on RNA replication, the primary polII transcript was made negative in sense and contained an intron that blocked the translation of cryptic transcripts from the opposite DNA strand. The RNA products of DNA-templated transcription, processing, and RNA replication were characterized by Northern blot hybridization and primer extension analysis. Marker gene expression and colony growth under selective conditions depended strictly on FHV RNA replication, with background colonies arising at a frequency of fewer than 1 in 108 plated cells. The utility of the system was demonstrated by introducing a second chimeric replicon and showing that at least two different selectable markers could be simultaneously expressed by means of RNA replication. This is the first example of FHV RNA1-dependent selectable marker expression initiated in vivo and will greatly facilitate the identification and characterization of the requirements and inhibitors of RNA replication.


Microbiology ◽  
2006 ◽  
Vol 152 (12) ◽  
pp. 3595-3605 ◽  
Author(s):  
Marta Marques ◽  
Dominik Mojzita ◽  
Maria A. Amorim ◽  
Teresa Almeida ◽  
Stefan Hohmann ◽  
...  

Turnover of damaged molecules is considered to play a key role in housekeeping of cells exposed to oxidative stress, and during the progress of ageing. In this work, global changes in the transcriptome were analysed during recovery of yeast cells after H2O2 stress. Regarding induced genes, those associated with protein fate were the most significantly over-represented. In addition to genes encoding subunits of the 20S proteasome, genes related to vacuolar proteolysis (PEP4 and LAP4), protein sorting into the vacuole, and vacuolar fusion were found to be induced. The upregulation of PEP4 gene expression was associated with an increase in Pep4p activity. The induction of genes related to proteolysis was correlated with an increased protein turnover after H2O2-induced oxidation. Furthermore, protein degradation and the removal of oxidized proteins decreased in Pep4p-deficient cells. Pep4p activity also increased during chronological ageing, and cells lacking Pep4p displayed a shortened lifespan associated with higher levels of carbonylated proteins. PEP4 overexpression prevented the accumulation of oxidized proteins, but did not increase lifespan. These results indicate that Pep4p is important for protein turnover after oxidative damage; however, increased removal of oxidized proteins is not sufficient to enhance lifespan.


2006 ◽  
Vol 72 (8) ◽  
pp. 5266-5273 ◽  
Author(s):  
Elke Nevoigt ◽  
Jessica Kohnke ◽  
Curt R. Fischer ◽  
Hal Alper ◽  
Ulf Stahl ◽  
...  

ABSTRACT The strong overexpression or complete deletion of a gene gives only limited information about its control over a certain phenotype or pathway. Gene function studies based on these methods are therefore incomplete. To effect facile manipulation of gene expression across a full continuum of possible expression levels, we recently created a library of mutant promoters. Here, we provide the detailed characterization of our yeast promoter collection comprising 11 mutants of the strong constitutive Saccharomyces cerevisiae TEF1 promoter. The activities of the mutant promoters range between about 8% and 120% of the activity of the unmutated TEF1 promoter. The differences in reporter gene expression in the 11 mutants were independent of the carbon source used, and real-time PCR confirmed that these differences were due to varying levels of transcription (i.e., caused by varying promoter strengths). In addition to a CEN/ARS plasmid-based promoter collection, we also created promoter replacement cassettes. They enable genomic integration of our mutant promoter collection upstream of any given yeast gene, allowing detailed genotype-phenotype characterizations. To illustrate the utility of the method, the GPD1 promoter of S. cerevisiae was replaced by five TEF1 promoter mutants of different strengths, which allowed analysis of the impact of glycerol 3-phosphate dehydrogenase activity on the glycerol yield.


2005 ◽  
Vol 33 (1) ◽  
pp. 247-252 ◽  
Author(s):  
M. Johnston ◽  
J.-H. Kim

Because glucose is the principal carbon and energy source for most cells, most organisms have evolved numerous and sophisticated mechanisms for sensing glucose and responding to it appropriately. This is especially apparent in the yeast Saccharomyces cerevisiae, where these regulatory mechanisms determine the distinctive fermentative metabolism of yeast, a lifestyle it shares with many kinds of tumour cells. Because energy generation by fermentation of glucose is inefficient, yeast cells must vigorously metabolize glucose. They do this, in part, by carefully regulating the first, rate-limiting step of glucose utilization: its transport. Yeast cells have learned how to sense the amount of glucose that is available and respond by expressing the most appropriate of its 17 glucose transporters. They do this through a signal transduction pathway that begins at the cell surface with the Snf3 and Rgt2 glucose sensors and ends in the nucleus with the Rgt1 transcription factor that regulates expression of genes encoding glucose transporters. We explain this glucose signal transduction pathway, and describe how it fits into a highly interconnected regulatory network of glucose sensing pathways that probably evolved to ensure rapid and sensitive response of the cell to changing levels of glucose.


Sign in / Sign up

Export Citation Format

Share Document