scholarly journals Nanoscale Structural and Mechanical Analysis of Bacillus anthracis Spores Inactivated with Rapid Dry Heating

2013 ◽  
Vol 80 (5) ◽  
pp. 1739-1749 ◽  
Author(s):  
Yun Xing ◽  
Alex Li ◽  
Daniel L. Felker ◽  
Larry W. Burggraf

ABSTRACTEffective killing ofBacillus anthracisspores is of paramount importance to antibioterrorism, food safety, environmental protection, and the medical device industry. Thus, a deeper understanding of the mechanisms of spore resistance and inactivation is highly desired for developing new strategies or improving the known methods for spore destruction. Previous studies have shown that spore inactivation mechanisms differ considerably depending upon the killing agents, such as heat (wet heat, dry heat), UV, ionizing radiation, and chemicals. It is believed that wet heat kills spores by inactivating critical enzymes, while dry heat kills spores by damaging their DNA. Many studies have focused on the biochemical aspects of spore inactivation by dry heat; few have investigated structural damages and changes in spore mechanical properties. In this study, we have inactivatedBacillus anthracisspores with rapid dry heating and performed nanoscale topographical and mechanical analysis of inactivated spores using atomic force microscopy (AFM). Our results revealed significant changes in spore morphology and nanomechanical properties after heat inactivation. In addition, we also found that these changes were different under different heating conditions that produced similar inactivation probabilities (high temperature for short exposure time versus low temperature for long exposure time). We attributed the differences to the differential thermal and mechanical stresses in the spore. The buildup of internal thermal and mechanical stresses may become prominent only in ultrafast, high-temperature heat inactivation when the experimental timescale is too short for heat-generated vapor to efficiently escape from the spore. Our results thus provide direct, visual evidences of the importance of thermal stresses and heat and mass transfer to spore inactivation by very rapid dry heating.

2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Dayong Zhang ◽  
Xiaohui Liu ◽  
Xuefeng Bai ◽  
Gang Wang ◽  
Liping Rong ◽  
...  

Purpose The purpose of this study is to investigate the heat resistance and heat-resistant oxygen aging of 4-nitrophthalonitrile-etherified cardanol-phenol-formaldehyde (PPCF) to further use and develop the resin as the matrix resin of high-temperature resistant adhesives and coatings. Design/methodology/approach PPCF resin was synthesized by 4-nitrophthalonitrile and cardanol-phenol-formaldehyde (PCF). The structures of PPCF and PCF were investigated by Fourier transform infrared, differential scanning calorimetry and proton nuclear magnetic resonance. In addition, the heat resistance and processability of PPCF and PCF resins were studied by dynamic mechanical analysis, thermogravimetric analysis, scanning electronic microscopy (SEM), X-ray diffraction (XRD) techniques and rheological studies. Findings The results reveal that PPCF forms a cross-linked network at a lower temperature. PPCF resin has excellent resistance under thermal aging in an air atmosphere and that it still had a certain residual weight after aging at 500°C for 2 h, whereas the PCF resin is completely decomposed. Originality/value 4-Nitrophthalonitrile was introduced into PCF resin, and XRD and SEM were used to investigate the high temperature residual carbon rate and heat-resistant oxygen aging properties of PPCF and PCF resins.


2011 ◽  
Vol 77 (19) ◽  
pp. 6746-6754 ◽  
Author(s):  
Jose-Luis Sanchez-Salas ◽  
Barbara Setlow ◽  
Pengfei Zhang ◽  
Yong-qing Li ◽  
Peter Setlow

ABSTRACTThe first ∼10% of spores released from sporangia (early spores) duringBacillus subtilissporulation were isolated, and their properties were compared to those of the total spores produced from the same culture. The early spores had significantly lower resistance to wet heat and hypochlorite than the total spores but identical resistance to dry heat and UV radiation. Early and total spores also had the same levels of core water, dipicolinic acid, and Ca and germinated similarly with several nutrient germinants. The wet heat resistance of the early spores could be increased to that of total spores if early spores were incubated in conditioned sporulation medium for ∼24 h at 37°C (maturation), and some hypochlorite resistance was also restored. The maturation of early spores took place in pH 8 buffer with Ca2+but was blocked by EDTA; maturation was also seen with early spores of strains lacking the CotE protein or the coat-associated transglutaminase, both of which are needed for normal coat structure. Nonetheless, it appears to be most likely that it is changes in coat structure that are responsible for the increased resistance to wet heat and hypochlorite upon early spore maturation.


2011 ◽  
Vol 77 (14) ◽  
pp. 4754-4769 ◽  
Author(s):  
Pengfei Zhang ◽  
Lingbo Kong ◽  
Guiwen Wang ◽  
Peter Setlow ◽  
Yong-qing Li

ABSTRACTDynamic processes during wet-heat treatment of individual spores ofBacillus cereus,Bacillus megaterium, andBacillus subtilisat 80 to 90°C were investigated using dual-trap Raman spectroscopy, differential interference contrast (DIC) microscopy, and nucleic acid stain (SYTO 16) fluorescence microscopy. During spore wet-heat treatment, while the spores' 1:1 chelate of Ca2+with dipicolinic acid (CaDPA) was released rapidly at a highly variable timeTlag, the levels of spore nucleic acids remained nearly unchanged, and theTlagtimes for individual spores from the same preparation were increased somewhat as spore levels of CaDPA increased. The brightness of the spores' DIC image decreased by ∼50% in parallel with CaDPA release, and there was no spore cortex hydrolysis observed. The lateral diameters of the spores' DIC image and SYTO 16 fluorescence image also decreased in parallel with CaDPA release. The SYTO 16 fluorescence intensity began to increase during wet-heat treatment at a time beforeTlagand reached maximum at a time slightly later thanTrelease. However, the fluorescence intensities of wet-heat-inactivated spores were ∼15-fold lower than those of nutrient-germinated spores, and this low SYTO 16 fluorescence intensity may be due in part to the low permeability of the dormant spores' inner membranes to SYTO 16 and in part to nucleic acid denaturation during the wet-heat treatment.


Crystals ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 173
Author(s):  
Patrice Berthod ◽  
Lionel Aranda ◽  
Jean-Paul Gomis

Nickel is often added to cobalt-based superalloys to stabilize their austenitic structure. In this work the effects of Ni on several high temperature properties of a chromium-rich cobalt-based alloy reinforced by high fraction of TaC carbides are investigated. Different thermal analysis techniques are used: differential scanning calorimetry (DSC), thermo-mechanical analysis (TMA) and thermogravimetry (TG). Results show that the progressive addition of nickel did not induce great modifications of microstructure, refractoriness or thermal expansion. However, minor beneficial effects were noted, including reduction of the melting temperature range and slight decrease in thermal expansion coefficient. The most important improvement induced by Ni addition concerns the hot oxidation behavior. In this way, introducing several tens wt % Ni in this type of cobalt-based alloy may be recommended.


2020 ◽  
Vol 14 (2) ◽  
pp. 215-238
Author(s):  
Stephen Nettelhorst ◽  
Laura Brannon ◽  
Angela Rose ◽  
Whitney Whitaker

Purpose The purpose of this study is to investigate online viewers’ preferences concerning the number and duration of video advertisements to watch during commercial breaks. The goal of the investigations was to assess whether online viewers preferred watching a fewer number of advertisements with longer durations or a greater number of advertisements with shorter durations. Design/methodology/approach Two studies used experimental research designs to assess viewers’ preferences regarding advertisements. These designs used two independent variables and one dependent variable. The first independent variable manipulated the type of choice options given to online viewers (e.g. one 60 s or two 30 s advertisements). The second independent variable manipulated when the choice was given to online viewers (i.e. at the beginning of the viewing experience or in the middle of the experience). The dependent variable measured viewers’ choices concerning their preferred advertisement option. Findings The results across both studies found that participants made choices that minimized total advertisement exposure time when possible. When minimizing total exposure time was not possible, participants made choices that minimized the number of exposures instead. Originality/value These investigations extend the literature on advertisement choice by examining online viewers’ preferences about the format of their advertising experience rather than the content of the persuasive messages themselves. In addition, these investigations provide value by investigating viewers’ responses to stimuli within realistic online simulations rather than abstract hypotheticals.


2020 ◽  
Vol 316 ◽  
pp. 02001
Author(s):  
Jing Sheng ◽  
Aamir Sohail ◽  
Mengguang Wang ◽  
Zhimin Wang

In order to realize the need for lightweight automobiles through replacing steel with plastics, the research and development of the plastic clutch pump body based on the friction welding was carried out. For the clutch pump body connected by friction welding process between the upper pump body and the lower pump body, the technical requirements of pressure 14 MPa and durability (high temperature 7.0 × 104 times, room temperature 7.0 × 105) are required. The structure type of the upper and lower pump bodies of the end face welding type was proposed. Through the static analysis of the pump body and weld and the mechanical analysis under the working condition, the structure of the clutch pump body (upper and lower pump body) was determined. According to the established welding process, the pressure of the clutch pump body is more than 15 MPa, and the number of high-temperature durable circulation and the number of room temperature durable circulation also reached 7.2×104 and 7.3×105 times respectively. The results show that the structural design of a clutch pump body meets the design requirements.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Yun Su ◽  
Miao Tian ◽  
Yunyi Wang ◽  
Xianghui Zhang ◽  
Jun Li

PurposeThe purpose of this paper is to study heat and steam transfer in a vertical air gap and improve thermal protective performance of protective clothing under thermal radiation and hot steam.Design/methodology/approachAn experiment-based model was introduced to analyze heat and moisture transfer in the vertical air gap between the protective clothing and human body. A developed test apparatus was used to simulate different air gap sizes (3, 6, 9, 12, 15, 18, 21 and 24 mm). The protective clothing with different air gap sizes was subjected to dry and wet heat exposures.FindingsThe increase of the air gap size reduced the heat and moisture transfer from the protective clothing to the skin surface under both heat exposures. The minimum air gap size for the initiation of natural convection in the dry heat exposure was between 6 and 9 mm, while the air gap size for the occurrence of natural convection was increased in the wet heat exposure. In addition, the steam mass flux presented a sharp decrease with the rising of the air gap size, followed by a stable state, mainly depending on the molecular diffusion and the convection mass transfer.Originality/valueThis research provides a better understanding of the optimum air gap under the protective clothing, which contributes to the design of optimum air gap size that provided higher thermal protection against dry and wet heat exposures.


2019 ◽  
Vol 10 (2) ◽  
pp. 138-154
Author(s):  
Farshid Masoumi ◽  
Ebrahim Farajpourbonab

Purpose The primary purpose of this research was to expand the knowledge base regarding the behavior of steel columns during exposure to fire. This paper presents the numerical study of the effect of heat on the performance of parking steel column in a seven-story steel building under cyclic loading. Design/methodology/approach In this research, the forces and deformations developed during a fire are estimated by using detailed 3D finite-element models. The analyses are in the form of a coupled thermo-mechanical analysis in two types of loading: concurrent loading (fire and cyclic loading) and non-concurrent loading (first fire and then cyclically), and the analyses have been conducted in both states of the fire loading with cooling and without cooling using the ABAQUS software. Further, it was investigated whether, during the fire loading, the specimen was protected by a 3-cm-thick concrete coating and how much it changes the seismic performance. After verification of the specimen with the experimental test results, the column model was investigated under different loading conditions. Findings The result of analyses indicates that the effect of thermal damage on the performance of steel columns, when cooling is happening late, is more than the state in which cooling occurs immediately after the fire. In this paper, thermal–seismic performance of parking steel columns has been specified and the effect of the fire damage has been investigated for the protected steel by concrete coating and to the non-protected steel, under both cooling and non-cooling states. Originality/value This study led to recommendations based on the findings and suggestions for additional work to support performance-based fire engineering. It is clear that predicting force and deformation on steel column during fire is complex and it is affected by many variables. Here in this paper, those variables are examined and proper results have been achieved.


Sign in / Sign up

Export Citation Format

Share Document