scholarly journals Influence of Reduced Water Activity on Lactose Metabolism by Lactococcus lactis subsp. cremorisat Different pH Values

1998 ◽  
Vol 64 (6) ◽  
pp. 2111-2116 ◽  
Author(s):  
S.-Q. Liu ◽  
R. V. Asmundson ◽  
P. K. Gopal ◽  
R. Holland ◽  
V. L. Crow

The influence of reduced water activity (aw) on lactose metabolism by Lactococcus lactis subsp.cremoris 2254 and 2272 was studied at different pH values. In control incubations (aw, 0.99) with nongrowing cells in pH-controlled phosphate buffer, the levels of carbon recovered asl-(+)-lactate were 92% at pH 6.1 and 5.3 and 78% at pH 4.5. However, the levels of recovery decreased to ∼50% at all pH values tested when the aw was 0.88 (with glycerol as the humectant). When growing cells in broth controlled at pH 6.3 were used, a reduction in the aw from 0.99 to 0.96 resulted in a decrease in the level of lactose carbon recovered asl-(+)-lactate from 100 to 71%. Low levels ofl-(+)-lactate carbon recovery (<50%) were also observed with cells resuspended in pH-uncontrolled reconstituted skim milk at aw values of 0.99 and 0.87 and in young cheese curds. The missing lactose carbon could not be accounted for by acetate, ethanol, formate, acetaldehyde, or pyruvate. Attempts were made to determine where the missing lactose carbon was diverted to under the stress conditions used. Some of the missing lactose carbon was recovered as galactose (0.1 to 2.5 mM) in culture supernatants. Decreasing either the aw or the pH resulted in increased galactose accumulation by nongrowing cells; adjusting both environmental factors together potentiated the effect. The sensitivities of the two lactococcal strains tested were different; strain 2272 was more prone to accumulate galactose under stress conditions. A methyl pentose(s) and additional galactose were found in acid-hydrolyzed supernatants from cultures containing both growing and nongrowing cells, indicating that a saccharide(s) rich in these components was formed by lactococci under low-aw and low-pH stress conditions.

2013 ◽  
Vol 65 (5) ◽  
pp. 1554-1560 ◽  
Author(s):  
L.M. Perin ◽  
R.O. Miranda ◽  
A.C. Camargo ◽  
M. Colombo ◽  
A.F. Carvalho ◽  
...  

The presented study aimed to verify the effect of different pH values, enzyme solutions and heat treatments on the antimicrobial activity of the bacteriocinogenic strain Lactococcus lactis subsp. lactis Lc08 and to test their antimicrobial activity against Listeria monocytogenes in reconstituted skim milk at refrigeration temperatures. This strain was previously described as a nisin Z producer and capable of inhibiting L. monocytogenes growth in in vitro tests. The antimicrobial activity of the bacteriocin cell-free supernatant of Lc08 was sensitive to enzyme treatments (except papain). The pH values and heating (65ºC for 30min, 75ºC for 15s) had no apparent effect on the antimicrobial activity of the bacteriocin produced by Lc08. Only treatment at autoclave conditions result in loss of their antimicrobial activity. Lc08 presented antimicrobial activity against L. monocytogenes in the milk system after 12h at 25ºC. No effect was found at 7ºC. The results show the application viability of the Lc08 in food systems as a biopreservative against L. monocytogenes.


2018 ◽  
Vol 69 (8) ◽  
pp. 2304-2305
Author(s):  
Oana Ruxandra Iana ◽  
Dragos Cristian Stefanescu ◽  
Viorel Zainea ◽  
Razvan Hainarosie

Variable pH values for skin have been reported in the literature, all within the acidic range, varying from 4.0 up to 7. 0. The origin of the acidic pH remains conjectural, and several factors have been incriminated with this role, such as eccrine and sebaceous secretions as well as proton pumps. Keeping low levels of pH prevents microbial dispersal as well as multiplication. The skin in the external auditory canal is also covered with this acidic mantle with antimicrobial value. Changes of pH in the external ear can lead to acute otitis externa. This condition is defined by the inflammation and infection of the cutaneous and subcutaneous tissues of the external auditory canal. 10% of the world�s population may suffer from acute otitis externa at least once in their lifetime. This paper aims to consolidate the relevance of an acidic pH in the healthy external ear and its relation to the pathogenesis and treatment of otitis externa through a prospective and interventional clinical study on 80 patients who presented to the outpatient department at Prof. Dr D. Hociota ENT Institute in Buch


1999 ◽  
Vol 65 (5-6) ◽  
pp. 407-413 ◽  
Author(s):  
B.O. Seabi ◽  
B.C. Viljoen ◽  
C. Roux ◽  
A. Botha

1989 ◽  
Vol 52 (9) ◽  
pp. 625-630 ◽  
Author(s):  
DEMETRIOS K. PAPAGEORGIOU ◽  
ELMER H. MARTH

Autoclaved samples of skim milk and deproteinated whey were fortified with 6 or 12% NaCl, inoculated with Listeria monocytogenes strains Scott A or California (CA), to contain ca. 1.0 × 103 cfu/ml (in the products with 6% salt) or ca. 5.0 × 103 cfu/ml (in the products with 12% salt) and incubated at 4 and 22°C. The pH values of the 6% salted whey, 6% salted skim milk, 12% salted whey, and 12% salted skim milk were 5.65, 6.20, 5.50, and 6.00 respectively. These values remained relatively constant during the entire experiment. Listeria counts were obtained by surface-plating appropriate dilutions and/or undiluted samples on Trypticase Agar (TA). Samples in which L. monocytogenes was not detected, were re-examined after 2, 4, 6 and 8 weeks of cold-enrichment. Generation times of L. monocytogenes in 6% salted whey at 22°C (3.67 h and 3.56 h for strains Scott A and CA, respectively) were significantly shorter than those in 6% salted skim milk at 22°C (4.31 and 4.42 h for the two strains, respectively). Generation times in 6% salted products at 4°C ranged between 37.49 h and 49.43 h. Maximum populations reached at 22 and 4°C ranged from 7.58 to 8.10 Log10 cfu/ml, and were significantly higher in 6% salted whey than in 6% salted skim milk. In 12% salted whey and skim milk incubated at 22°C, L. monocytogenes gradually decreased in numbers. Strain CA was inactivated within 85 d in 12% salted skim milk or within 110 d in 12% salted whey, and was significantly less salt tolerant than strain Scott A which survived for more than 130 d under the same conditions. Loss of viability by both strains was similar in 12% salted whey and skim milk after 130 d of storage at 4°C, and the decreases in population were less than 0.7 order of magnitude.


2020 ◽  
Vol 8 (2) ◽  
pp. 150
Author(s):  
Inacia Dos Santos Moreira ◽  
Jacinete Pereira Lima ◽  
Deise Souza de Castro ◽  
Wilton Pereira da Silva ◽  
Josivanda Palmeira Gomes ◽  
...  

For the preservation of products obtained by dehydration, it is necessary to evaluate their physicochemical characteristics during storage. It was proposed, in the present study, to evaluate the stability of the kiwi cv. ‘Hayward’ powder, obtained at temperatures of 60 and 70 °C during its storage in laminated packages under controlled conditions of temperature (25 ºC) and relative humidity (75%) for 90 days. The parameter’s evaluated were: moisture content, ashes, soluble solids, titratable acidity (% citric acid), pH, water activity at 25 ºC, color for the parameters lightness (L*) and chromaticity (+a* red; -a* green; +b* yellow; and -b* blue), phenolic compounds, flavonoids, total chlorophyll and carotenoids. It was observed that, after the 90 days, for the powder obtained at 70 °C, the soluble solids and pH values were altered by the storage, which did not occur for the powder obtained at 60 °C. For both powders, the content of ash and bioactive compounds were not affected by storage. The parameter of lightness decreased in both powders. The powder obtained at 70 ºC proved to be better, showing lower content of moisture and total water activity, as well as the highest values of bioactive compounds.


1960 ◽  
Vol 27 (1) ◽  
pp. 91-102 ◽  
Author(s):  
F. H. McDowall ◽  
J. A. Singleton ◽  
B. S. Le Heron

SummaryProduction of diacetyl and acetoin by starters in cold skim-milk and cream was shown to increase with increase in the proportion of starter culture added, with some limitations at the higher rates of starter addition.With Streptococcus diacetilactis starter in skim-milk at 50°F the relation between proportion of starter added and production of diacetyl was linear up to addition at the 4% level, whereas at 43°F it was approximately linear up to the 10% level. At both 50 and 43°F the relation between the proportion of starter added and the production of acetoin was linear up to the 10% level.With Camb starter in skim-milk at both 50 and 43°F there were regular increases in production of diacetyl up to the 4% level of addition, but only minor changes thereafter with increase in the proportion of starter added up to 10%. At both temperatures the maximum production of acetoin was reached with the 7% rate of addition.Production of diacetyl and acetoin in skim-milk was greater at 50°F than at 43°F with both starters for all proportions up to 10%, and it was greater for Str. diacetilactis than for the mixed cultures.Except at the higher rates of addition of starter and at the higher temperature there were no concomitant increases in the acidity of the milk or lowering of the pH values. It appears that at low temperatures production of diacetyl by starters in sweet milk and cream proceeds independently of production of lactic acid.Similar results were obtained in a series of experimental buttermaking trials and some small commercial-scale trials, in which varying proportions of starter were added to creams after pasteurizing and before holding overnight for churning. With the cream-holding temperatures used, mainly 40–50°F, the pH values of the butters were not appreciably lowered by the starter additions to the cream. At all the rates of addition there were with Str. diacetilactis starter higher contents of diacetyl in the butter than with Camb starter. There was no indication of any relationship between the proportion of starter added and the keeping quality of the butter.


2009 ◽  
Vol 27 (No. 5) ◽  
pp. 361-371 ◽  
Author(s):  
P. Čermák ◽  
A. Landfeld ◽  
P. Měřička ◽  
M. Houška

Enterococci are bacteria commonly found in humans. However, these bacteria can cause severe infections in susceptible individuals. The strains of <i>Enterococcus faecium</i> have demonstrated an increasing resistance to antibiotics, which is considered an important virulence factor. The contribution of <i>E. faecium</i> to the infection-related illnesses has recently increased, which involves most of the isolated Vancomycin-Resistant Enterococcus (VRE) strains. Enterococci are common contaminants of human milk processed in milk banks, and the consumption of contaminated milk can cause severe infection-related complications if the control mechanisms fail to detect the contamination. Extensive data are available on the growth curves of <i>E. faecium</i> in broth at pH values between 6 and 7, at temperatures of 5°C to 20°C, and for water activity values <i>a</i><sub>w</sub> of 0.97 to 0.997. These growth curves were replaced with non-linear Gompertz curves for microorganism growth, the parameters of which were correlated with the temperature and pH values. A mathematical relationship to water activity could not be established since only two water activity levels have been experimentally tested and the resulting model would be highly inaccurate. The issue of water activity was resolved by the development of two separate models, one for each of the water activity values. The models correspond very well with the experimental growth curve data from which they were developed. The model for the water activity level of 0.997 was used to predict the growth of <i>E. faecium</i> in cow and human milks (these two fluids have practically identical water activity), and the prediction was compared to the experimental data. A good agreement between the predicted and experimental data was achieved for cow milk. With human milk, the model usually predicted a more rapid growth rate than that seen experimentally. The model was thus on the conservative side in all cases. The inhibitory agents naturally present in human milk might be responsible for the slower growth rates.


1984 ◽  
Vol 47 (1) ◽  
pp. 16-19 ◽  
Author(s):  
JONATHAN P. BURLINGAME-FREY ◽  
ELMER H. MARTH

Raw skim milk was inoculated (1%, v/v) with a proteolytic psychrotrophic bacterium that previously was isolated from milk. The inoculated skim milk was incubated at 7°C for 0, 3, 5 and 7 d. The pH values for the milk were 6.6, 6.5, 6.45 and 5.95, and the numbers of psychrotrophs/ml were 1.0 × 104 8.9 × 107, 9.0 × 108 and 2.5 × 108 for days 0, 3, 5 and 7, respectively. Samples of milk were negatively stained, examined with transmission electron microscopy and distribution of sizes of casein micelles was determined. The average and (mode) sizes of micelles were 849 (789), 1030 (634), 761 (634) and 405 (316) Angstroms for milks after days 0, 3, 5 and 7, respectively. Another set of samples was prepared from skim milk immediately after it was acidified to pH values of 6.6, 6.5, 6.45 and 5.95. The average and (mode) sizes of micelles were 891 (766), 875 (615), 913 (766) and 840 (615) Angstroms for milks having pH values of 6.6, 6.5, 6.45 and 5.95, respectively. Changes in size of micelles in the incubated samples resulted from bacterial activity other than small changes in pH.


Sign in / Sign up

Export Citation Format

Share Document