scholarly journals Nitrogen-Regulated Hypermutator Strain of Synechococcus sp. for Use in In Vivo Artificial Evolution

2003 ◽  
Vol 69 (11) ◽  
pp. 6427-6433 ◽  
Author(s):  
Daniel Emlyn-Jones ◽  
G. Dean Price ◽  
T. John Andrews

ABSTRACT Artificially evolved variants of proteins with roles in photosynthesis may be selected most conveniently by using a photosynthetic organism, such as a cyanobacterium, whose growth depends on the function of the target protein. However, the limited transformation efficiency of even the most transformable cyanobacteria wastes much of the diversity of mutant libraries of genes produced in vitro, impairing the coverage of sequence space. This highlights the advantages of an in vivo approach for generating diversity in the selection organism itself. We constructed two different hypermutator strains of Synechococcus sp. strain PCC 7942 by insertionally inactivating or nutritionally repressing the DNA mismatch repair gene, mutS. Inactivation of mutS greatly increases the mutation rate of the cyanobacterium's genes, leading to an up-to-300-fold increase in the frequency of resistance to the antibiotics rifampin and spectinomycin. In order to control the rate of mutation and to limit cellular damage resulting from prolonged hypermutation, we placed the uninterrupted mutS gene in the cyanobacterial chromosome under the transcriptional control of the cyanobacterial nirA promoter, which is repressed in the presence of NH4 + as an N source and derepressed in its absence. By removing or adding this substrate, hypermutation was activated or repressed as required. As expected, hypermutation caused by repression in PnirA-mutS transformants led to an accumulation of spectinomycin resistance mutations during growth.

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Hayato Mizuta ◽  
Koutaroh Okada ◽  
Mitsugu Araki ◽  
Jun Adachi ◽  
Ai Takemoto ◽  
...  

AbstractALK gene rearrangement was observed in 3%–5% of non-small cell lung cancer patients, and multiple ALK-tyrosine kinase inhibitors (TKIs) have been sequentially used. Multiple ALK-TKI resistance mutations have been identified from the patients, and several compound mutations, such as I1171N + F1174I or I1171N + L1198H are resistant to all the approved ALK-TKIs. In this study, we found that gilteritinib has an inhibitory effect on ALK-TKI–resistant single mutants and I1171N compound mutants in vitro and in vivo. Surprisingly, EML4-ALK I1171N + F1174I compound mutant-expressing tumors were not completely shrunk but regrew within a short period of time after alectinib or lorlatinib treatment. However, the relapsed tumor was markedly shrunk after switching to the gilteritinib in vivo model. In addition, gilteritinib was effective against NTRK-rearranged cancers including entrectinib-resistant NTRK1 G667C-mutant and ROS1 fusion-positive cancer.


Mobile DNA ◽  
2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Justin M. Waldern ◽  
Dorie Smith ◽  
Carol Lyn Piazza ◽  
E. Jake Bailey ◽  
Nicholas J. Schiraldi ◽  
...  

Abstract Background Group II introns are mobile retroelements, capable of invading new sites in DNA. They are self-splicing ribozymes that complex with an intron-encoded protein to form a ribonucleoprotein that targets DNA after splicing. These molecules can invade DNA site-specifically, through a process known as retrohoming, or can invade ectopic sites through retrotransposition. Retrotransposition, in particular, can be strongly influenced by both environmental and cellular factors. Results To investigate host factors that influence retrotransposition, we performed random insertional mutagenesis using the ISS1 transposon to generate a library of over 1000 mutants in Lactococcus lactis, the native host of the Ll.LtrB group II intron. By screening this library, we identified 92 mutants with increased retrotransposition frequencies (RTP-ups). We found that mutations in amino acid transport and metabolism tended to have increased retrotransposition frequencies. We further explored a subset of these RTP-up mutants, the most striking of which is a mutant in the ribosomal RNA methyltransferase rlmH, which exhibited a reproducible 20-fold increase in retrotransposition frequency. In vitro and in vivo experiments revealed that ribosomes in the rlmH mutant were defective in the m3Ψ modification and exhibited reduced binding to the intron RNA. Conclusions Taken together, our results reinforce the importance of the native host organism in regulating group II intron retrotransposition. In particular, the evidence from the rlmH mutant suggests a role for ribosome modification in limiting rampant retrotransposition.


2005 ◽  
Vol 49 (6) ◽  
pp. 2343-2351 ◽  
Author(s):  
Patricia Komp Lindgren ◽  
Linda L. Marcusson ◽  
Dorthe Sandvang ◽  
Niels Frimodt-Møller ◽  
Diarmaid Hughes

ABSTRACT Resistance to fluoroquinolones in urinary tract infection (UTIs) caused by Escherichia coli is associated with multiple mutations, typically those that alter DNA gyrase and DNA topoisomerase IV and those that regulate AcrAB-TolC-mediated efflux. We asked whether a fitness cost is associated with the accumulation of these multiple mutations. Mutants of the susceptible E. coli UTI isolate Nu14 were selected through three to five successive steps with norfloxacin. Each selection was performed with the MIC of the selected strain. After each selection the MIC was measured; and the regions of gyrA, gyrB, parC, and parE, previously associated with resistance mutations, and all of marOR and acrR were sequenced. The first selection step yielded mutations in gyrA, gyrB, and marOR. Subsequent selection steps yielded mutations in gyrA, parE, and marOR but not in gyrB, parC, or acrR. Resistance-associated mutations were identified in almost all isolates after selection steps 1 and 2 but in less than 50% of isolates after subsequent selection steps. Selected strains were competed in vitro, in urine, and in a mouse UTI infection model against the starting strain, Nu14. First-step mutations were not associated with significant fitness costs. However, the accumulation of three or more resistance-associated mutations was usually associated with a large reduction in biological fitness, both in vitro and in vivo. Interestingly, in some lineages a partial restoration of fitness was associated with the accumulation of additional mutations in late selection steps. We suggest that the relative biological costs of multiple mutations may influence the evolution of E. coli strains that develop resistance to fluoroquinolones.


2012 ◽  
Vol 111 (suppl_1) ◽  
Author(s):  
Liudmila Zakharova ◽  
Hikmet Nural ◽  
Mohamed A Gaballa

Cardiac progenitor cells are generated from atria explants; however the cellular origin and the mechanisms of cell outgrowth are unclear. Using transgenic tamoxifen-induced Willms tumor 1 (Wt1)-Cre/ERT and Cre-activated GFP reporter mice, we found approximately 40% of explant-derived cells and 74% of explant-derived c-Kit+ cells originated from the epicardium. In atria from sham hearts, Wt1+ cells were located in a thin epicardial layer, while c-Kit+ cells were primarily found within both the sub-epicardium and the myocardium, albeit at low frequency. No overlap between c-Kit+ and Wt1+ cells was observed, suggesting that epicardial Wt1+ cells do not express c-Kit marker in vivo, but more likely the c-Kit marker was acquired in culture. Compared with 4 days in culture, at day 21 we observed 7 folds increase in Snail gene expression; 32% increase in α-smooth muscle actin (SMA) marker, and 30% decrease in E-cadherin marker, suggesting that the explant-derived cells underwent epithelial to mesenchymal transition (EMT) in vitro. Cell outgrowths released TGF-β (1036.4 ± 1.18 pm/ml) and exhibited active TGF-β signaling, which might triggered the EMT. Compared to shams, CHF cell outgrowths exhibited elevated levels of EMT markers, SMA (49% vs. 34%) and Snail (2 folds), and reduced level of Wt1 (11% vs. 22%). In addition, CHF cell outgrowths had two folds increase in Pai1 gene expression, a direct target of TGF-β signaling. In c-Kit+ cells derived from CHF explants, Nanog gene expression was 4 folds lower and Sox 2 was 2 folds lower compared with cells from shams. Suppression of EMT in cell outgrowth increased the percentage of c-Kit+ and Wt1+ cells by 17%, and 15%, respectively. Also suppression of EMT in c-Kit+ cells resulted in 4 folds increase in Nanog and 3 fold increase in Sox2 gene expressions. Our results showed that CHF may further exuberates EMT while diminishes the re-activation of pluripotency genes. Thus, EMT modulation in CHF is a possible strategy to regulate both the yield and the pluripotency of cardiac-explant-derived progenitor cells.


2021 ◽  
Author(s):  
Bin Qiu ◽  
Zhaohui Zhong ◽  
Shawn Righter ◽  
Yuxue Xu ◽  
Jun Wang ◽  
...  

Abstract FK506-binding protein 51 (encoded by Fkpb51) has been associated with stress-related mental illness. To identify its function, we studied the morphological consequences of Fkbp51 deletion. Artificial Intelligence-assist morphological analysis identified that Fkbp51 knock-out (KO) mice possess more elongated CA and DG but shorter in height in coronal section when compared to WT. Primary cultured Fkbp51 KO hippocampal neurons were shown to exhibit larger dendritic outgrowth than wild-type (WT) controls, pharmacological manipulation experiments suggest that this may occur through regulation of microtubule-associated protein. Both in vitro primary culture and in vivo labeling support that FKBP51 regulates microtubule-associated protein expression. Furthermore, in the absence of differences in mRNA expression, Fkbp51 KO hippocampus exhibited decreases in βIII-tubulin, MAP2, and Tau protein levels, but a greater than 2.5-fold increase in Parkin protein. Overexpression and knock-down FKBP51 demonstrated that FKBP51 negatively regulates Parkin in a dose-dependent and ubiquitin-mediated manner. These results indicate a potential novel post-translational regulatory of Parkin by FKBP51 and significance of their interaction on disease onset.


1994 ◽  
Vol 14 (7) ◽  
pp. 4802-4814
Author(s):  
S D Priebe ◽  
J Westmoreland ◽  
T Nilsson-Tillgren ◽  
M A Resnick

Sequence homology is expected to influence recombination. To further understand mechanisms of recombination and the impact of reduced homology, we examined recombination during transformation between plasmid-borne DNA flanking a double-strand break (DSB) or gap and its chromosomal homolog. Previous reports have concentrated on spontaneous recombination or initiation by undefined lesions. Sequence divergence of approximately 16% reduced transformation frequencies by at least 10-fold. Gene conversion patterns associated with double-strand gap repair of episomal plasmids or with plasmid integration were analyzed by restriction endonuclease mapping and DNA sequencing. For episomal plasmids carrying homeologous DNA, at least one input end was always preserved beyond 10 bp, whereas for plasmids carrying homologous DNA, both input ends were converted beyond 80 bp in 60% of the transformants. The system allowed the recovery of transformants carrying mixtures of recombinant molecules that might arise if heteroduplex DNA--a presumed recombination intermediate--escapes mismatch repair. Gene conversion involving homologous DNAs frequently involved DNA mismatch repair, directed to a broken strand. A mutation in the PMS1 mismatch repair gene significantly increased the fraction of transformants carrying a mixture of plasmids for homologous DNAs, indicating that PMS1 can participate in DSB-initiated recombination. Since nearly all transformants involving homeologous DNAs carried a single recombinant plasmid in both Pms+ and Pms- strains, stable heteroduplex DNA appears less likely than for homologous DNAs. Regardless of homology, gene conversion does not appear to occur by nucleolytic expansion of a DSB to a gap prior to recombination. The results with homeologous DNAs are consistent with a recombinational repair model that we propose does not require the formation of stable heteroduplex DNA but instead involves other homology-dependent interactions that allow recombination-dependent DNA synthesis.


1986 ◽  
Vol 6 (1) ◽  
pp. 54-61
Author(s):  
E J Baker ◽  
L R Keller ◽  
J A Schloss ◽  
J L Rosenbaum

After flagellar detachment in Chlamydomonas reinhardi, there is a rapid synthesis and accumulation of mRNAs for tubulin and other flagellar proteins. Maximum levels of these mRNAs (flagellar RNAs) are reached within 1 h after deflagellation, after which they are rapidly degraded to their predeflagellation levels. The degradation of alpha- and beta-tubulin RNAs was shown to be due to the shortening of their half-lives after accumulation (Baker et al., J. Cell Biol. 99:2074-2081, 1984). Deflagellation in the presence of protein synthesis inhibitors results in the accumulation of tubulin and other flagellar mRNAs by kinetics similar to those of controls. However, unlike controls, in which the accumulated mRNAs are rapidly degraded, these mRNAs are stabilized in cycloheximide. The stabilization by cycloheximide is specific for the flagellar mRNAs accumulated after deflagellation, since there is no change in the levels of flagellar mRNAs in nondeflagellated (uninduced) cells in the presence of cycloheximide. The kinetics of flagellar mRNA synthesis after deflagellation are shown to be the same in cycloheximide-treated and control cells by in vivo labeling and in vitro nuclear runoff experiments. These results show that protein synthesis is not required for the induced synthesis of flagellar mRNAs, and that all necessary transcriptional control factors are present in the cell before deflagellation, but that protein synthesis is required for the accelerated degradation of the accumulated flagellar mRNAs. Since cycloheximide prevents the induced synthesis and accumulation of flagellar proteins, it is possible that the product(s) of protein synthesis required for the accelerated decay of these mRNAs is a flagellar protein(s). The possibility that one or more flagellar proteins autoregulate the stability of the flagellar mRNAs is discussed.


Sign in / Sign up

Export Citation Format

Share Document