scholarly journals Association of Uterine and Salpingeal Fibrosis with Chlamydial Hsp60 and Hsp10 Antigen-Specific Antibodies in Chlamydia-Infected Koalas

2005 ◽  
Vol 12 (5) ◽  
pp. 632-639 ◽  
Author(s):  
Damien P. Higgins ◽  
Susan Hemsley ◽  
Paul J. Canfield

ABSTRACT Infection by Chlamydia pneumoniae or Chlamydia pecorum commonly causes chronic, fibrotic disease of the urogenital tracts of female koalas. Studies of humans have associated titers of serum immunoglobulin G (IgG) against chlamydial hsp60 and hsp10 antigens with chronic infection, salpingeal fibrosis, and tubal infertility. To determine whether a similar relationship exists in Chlamydia-infected koalas, samples were collected opportunistically from 34 wild female koalas and examined by gross pathology and histopathology, PCR, and immunohistochemistry for Chlamydia spp. and enzyme-linked immunosorbent assay for serological responses to chlamydial hsp10 and hsp60 antigens. Greater anti-hsp titers occurred in Chlamydia-infected koalas with fibrous occlusion of the uterus or uterine tube than in other Chlamydia-infected koalas (for hsp10 IgG, P = 0.005; for hsp60 IgG, P = 0.001; for hsp10 IgA, P = 0.04; for hsp60 IgA, P = 0.09). However, as in humans, some koalas with tubal occlusion had low titers. Among Chlamydia-infected koalas with tubal occlusion, those with low titers were more likely to have an active component to their ongoing uterine or salpingeal inflammation (P = 0.007), such that the assay predicted, with 79% sensitivity and 92% specificity, tubal occlusion where an active component of inflammation was absent. Findings of this study permit advancement of clinical and epidemiological studies of host-pathogen-environment interactions and pose intriguing questions regarding the significance of the Th1/Th2 paradigm and antigen-presenting and inflammation-regulating capabilities of uterine epithelial cells and the roles of latency and reactivation of chlamydial infections in pathogenesis of upper reproductive tract disease of koalas.

PLoS ONE ◽  
2021 ◽  
Vol 16 (4) ◽  
pp. e0249658
Author(s):  
Emma Peel ◽  
Yuanyuan Cheng ◽  
Julianne T. Djordjevic ◽  
Denis O’Meally ◽  
Mark Thomas ◽  
...  

Devastating fires in Australia over 2019–20 decimated native fauna and flora, including koalas. The resulting population bottleneck, combined with significant loss of habitat, increases the vulnerability of remaining koala populations to threats which include disease. Chlamydia is one disease which causes significant morbidity and mortality in koalas. The predominant pathogenic species, Chlamydia pecorum, causes severe ocular, urogenital and reproductive tract disease. In marsupials, including the koala, gene expansions of an antimicrobial peptide family known as cathelicidins have enabled protection of immunologically naïve pouch young during early development. We propose that koala cathelicidins are active against Chlamydia and other bacteria and fungi. Here we describe ten koala cathelicidins, five of which contained full length coding sequences that were widely expressed in tissues throughout the body. Focusing on these five, we investigate their antimicrobial activity against two koala C. pecorum isolates from distinct serovars; MarsBar and IPTaLE, as well as other bacteria and fungi. One cathelicidin, PhciCath5, inactivated C. pecorum IPTaLE and MarsBar elementary bodies and significantly reduced the number of inclusions compared to the control (p<0.0001). Despite evidence of cathelicidin expression within tissues known to be infected by Chlamydia, natural PhciCath5 concentrations may be inadequate in vivo to prevent or control C. pecorum infections in koalas. PhciCath5 also displayed antimicrobial activity against fungi and Gram negative and positive bacteria, including methicillin-resistant Staphylococcus aureus (MRSA). Electrostatic interactions likely drive PhciCath5 adherence to the pathogen cell membrane, followed by membrane permeabilisation leading to cell death. Activity against E. coli was reduced in the presence of 10% serum and 20% whole blood. Future modification of the PhciCath5 peptide to enhance activity, including in the presence of serum/blood, may provide a novel solution to Chlamydia infection in koalas and other species.


2021 ◽  
Vol 9 (2) ◽  
pp. 209
Author(s):  
Romy Razakandrainibe ◽  
Célia Mérat ◽  
Nathalie Kapel ◽  
Marc Sautour ◽  
Karine Guyot ◽  
...  

Human cryptosporidiosis remains underdiagnosed, and rapid/accurate diagnosis is of clinical importance. Diagnosis of the Cryptosporidium oocyst in stool samples by conventional microscopy is labor-intensive, time-consuming, and requires skillful experience. Thus, we aimed to evaluate the usefulness of a coproantigen enzyme-linked immunosorbent assay (ELISA) test in detecting Cryptosporidium spp. from fecal specimens. For this aim, we evaluated the performances of a commercial ELISA (CoproELISA Cryptosporidium kit, Savyon Diagnostics, Israel) for the detection of Cryptosporidium spp. in random clinical stool samples through a multicenter study. The sensitivity and specificity for coproantigen ELISA were 98.86% and 94.32%, respectively. The coproantigen ELISA results indicate that the simple, rapid, reliable, and standardized immunoassay test is sensitive and specific for routine diagnosis, and may be useful for large-scale epidemiological studies of cryptosporidiosis.


2003 ◽  
Vol 10 (1) ◽  
pp. 103-107 ◽  
Author(s):  
I. Portig ◽  
J. C. Goodall ◽  
R. L. Bailey ◽  
J. S. H. Gaston

ABSTRACT Detection of antibodies to an outer membrane protein 2 (OMP2) by enzyme-linked immunosorbent assay (ELISA) by using either the Chlamydia trachomatis- or the Chlamydia pneumoniae-specific protein was investigated. OMP2 is an immunodominant antigen giving rise to antibody responses in humans infected with different C. trachomatis serovars (A to C and D to K) or with C. pneumoniae, which could be detected by OMP2 ELISA. OMP2 ELISA is not species specific, but antibody titers were usually higher on the homologous protein. The sensitivity of this assay was high but varied according to the “gold standard” applied. Levels of antibody to C. pneumoniae OMP2 as detected by ELISA seem to return to background or near-background values within a shorter period of time compared to antibodies to C. pneumoniae detected by microimmunofluorescence (MIF), making it more likely that positive results in ELISA reflect recent infection. Thus, OMP2 ELISA has distinct advantages over MIF and commercially available ELISAs and might be a useful tool for the serodiagnosis of chlamydial infection.


2020 ◽  
Vol 103 (1) ◽  
pp. 737-749 ◽  
Author(s):  
E. Kelly ◽  
C.G. McAloon ◽  
L. O'Grady ◽  
M. Duane ◽  
J.R. Somers ◽  
...  

2020 ◽  
Vol 174 ◽  
pp. 189
Author(s):  
S. Pagliarani ◽  
S. Johnston ◽  
M. Pyne ◽  
R. Booth ◽  
L. Hulse ◽  
...  

2004 ◽  
Vol 34 (5) ◽  
pp. 1525-1529 ◽  
Author(s):  
Cristiane Divan Baldani ◽  
Rosangela Zacarias Machado ◽  
Paulo de Tarso Landgraf Botteon ◽  
Felipe Santoro Takakura ◽  
Carlos Luiz Massard

A crude antigenic preparation of Babesia equi was used to develop and establish the suitability of an enzyme-linked immunosorbent assay (ELISA) for the detection of parasite carriers. Optimal dilutions of the antigen, using positive and negative reference sera, were determined by checkboard titrations. The specificity and sensitivity of the ELISA were 100 %. A total of 90 serum samples were taken from horses from the Northeast region of São Paulo State and examined for diagnosis of equine B. equi infection by ELISA. Approximately 75% (n=67) of all the horses tested were found serologically positive for B. equi. These results suggest that the ELISA described may prove to be an appropriate serological test for epidemiological studies on B. equi infections in the field and that equine piroplasmosis is a cause for serious concern in the State of São Paulo, Brazil.


2004 ◽  
Vol 11 (2) ◽  
pp. 245-249 ◽  
Author(s):  
Rene Alvarez ◽  
M. Kariuki Njenga ◽  
Melissa Scott ◽  
Bruce S. Seal

ABSTRACT Avian metapneumoviruses (aMPV) cause an upper respiratory tract disease with low mortality but high morbidity, primarily in commercial turkeys, that can be exacerbated by secondary infections. There are three types of aMPV, of which type C is found only in the United States. The aMPV nucleoprotein (N) amino acid sequences of serotypes A, B, and C were aligned for comparative analysis. On the basis of the predicted antigenicity of consensus sequences, five aMPV-specific N peptides were synthesized for development of a peptide antigen enzyme-linked immunosorbent assay (aMPV N peptide-based ELISA) to detect aMPV-specific antibodies among turkeys. Sera from naturally and experimentally infected turkeys were used to demonstrate the presence of antibodies reactive to the chemically synthesized aMPV N peptides. Subsequently, aMPV N peptide 1, which had the sequence 10-DLSYKHAILKESQYTIKRDV-29, with variations at only three amino acids among aMPV serotypes, was evaluated as a universal aMPV ELISA antigen. Data obtained with the peptide-based ELISA correlated positively with total aMPV viral antigen-based ELISAs, and the peptide ELISA provided higher optical density readings. The results indicated that aMPV N peptide 1 can be used as a universal ELISA antigen to detect antibodies for all aMPV serotypes.


Sign in / Sign up

Export Citation Format

Share Document