scholarly journals Retinal Biosynthesis in Fungi: Characterization of the Carotenoid Oxygenase CarX from Fusarium fujikuroi

2007 ◽  
Vol 6 (4) ◽  
pp. 650-657 ◽  
Author(s):  
Alfonso Prado-Cabrero ◽  
Daniel Scherzinger ◽  
Javier Avalos ◽  
Salim Al-Babili

ABSTRACT The car gene cluster of the ascomycete Fusarium fujikuroi encodes two enzymes responsible for torulene biosynthesis (CarRA and CarB), an opsin-like protein (CarO), and a putative carotenoid cleaving enzyme (CarX). It was presumed that CarX catalyzes the formation of the major carotenoid in F. fujikuroi, neurosporaxanthin, a cleavage product of torulene. However, targeted deletion of carX did not impede neurosporaxanthin biosynthesis. On the contrary, ΔcarX mutants showed a significant increase in the total carotenoid content, indicating an involvement of CarX in the regulation of the pathway. In this work, we investigated the enzymatic activity of CarX. The expression of the enzyme in β-carotene-accumulating Escherichia coli cells led to the formation of the opsin chromophore retinal. The identity of the product was proven by high-performance liquid chromatography and gas chromatography-mass spectrometry. Subsequent in vitro assays with heterologously expressed and purified CarX confirmed its β-carotene-cleaving activity and revealed its capability to produce retinal also from other substrates, such as γ-carotene, torulene, and β-apo-8′-carotenal. Our data indicate that the occurrence of at least one β-ionone ring in the substrate is required for the cleavage reaction and that the cleavage site is determined by the distance to the β-ionone ring. CarX represents the first retinal-synthesizing enzyme reported in the fungal kingdom so far. It seems likely that the formed retinal is involved in the regulation of the carotenoid biosynthetic pathway via a negative feedback mechanism.

Molecules ◽  
2020 ◽  
Vol 25 (5) ◽  
pp. 1037
Author(s):  
Sergio Rosselli ◽  
Rosa Tundis ◽  
Maurizio Bruno ◽  
Mariarosaria Leporini ◽  
Tiziana Falco ◽  
...  

This study aimed to evaluate the chemical composition by gas chromatography-mass spectrometry (GC-MS) and Nuclear Magnetic Resonance (NMR) analyses, the antioxidant activities evaluated by different in vitro assays namely 2,2-diphenyl-1-picrylhydrazyl (DPPH), 2,2′-azino-bis(3-ethylbenzothiazoline-6-sulphonic acid) (ABTS), Ferric Reducing Ability Power (FRAP), and β-carotene bleaching tests, and the inhibitory effects of enzymes linked to obesity (lipase, α-amylase, and α-glucosidase) of fixed seed oil of Ceiba speciosa (A. St.-Hil.). Fourteen compounds were identified. Linoleic acid (28.22%) was the most abundant followed by palmitic acid (19.56%). Malvalic acid (16.15%), sterculic acid (11.11%), and dihydrosterculic acid (2.74%) were also detected. C. speciosa fixed oil exerted a promising ABTS radicals scavenging activity with an IC50 value of 10.21 µg/mL, whereas an IC50 of 77.44 µg/mL against DPPH+ radicals was found. C. speciosa fixed oil inhibited lipase with an IC50 value of 127.57 µg/mL. The present investigation confirmed the functional properties of C. speciosa fixed oil, and proposes its use as valuable source of bioactive constituents.


Molecules ◽  
2019 ◽  
Vol 24 (3) ◽  
pp. 482 ◽  
Author(s):  
Nguyen Quan ◽  
Hoang-Dung Tran ◽  
Tran Xuan ◽  
Ateeque Ahmad ◽  
Tran Dat ◽  
...  

Momilactones A (MA) and B (MB) are the active phytoalexins and allelochemicals in rice. In this study, MA and MB were purified from rice husk of Oryza sativa cv. Koshihikari by column chromatography, and purification was confirmed by high-performance liquid chromatography, thin-layer chromatography, gas chromatography-mass spectrometry, liquid chromatography-electrospray ionization-mass spectrometry (LC-ESI-MS), and 1H and 13C nuclear magnetic resonance analyses. By in vitro assays, both MA and MB exerted potent inhibition on α-amylase and α-glucosidase activities. The inhibitory effect of MB on these two key enzymes was greater than that of MA. Both MA and MB exerted greater α-glucosidase suppression as compared to that of the commercial diabetic inhibitor acarbose. Quantities of MA and MB in rice grain were 2.07 ± 0.01 and 1.06 ± 0.01 µg/dry weight (DW), respectively. This study was the first to confirm the presence of MA and MB in refined rice grain and reported the α-amylase and α-glucosidase inhibitory activity of the two compounds. The improved protocol of LC-ESI-MS in this research was simple and effective to detect and isolate MA and MB in rice organs.


HortScience ◽  
2001 ◽  
Vol 36 (4) ◽  
pp. 746-749 ◽  
Author(s):  
Marisa M. Wall ◽  
Cynthia A. Waddell ◽  
Paul W. Bosland

The β-carotene and total carotenoid content of either fresh or dried tissue of fruits of a total of 57 cultivars of six Capsicum species were analyzed using high performance liquid chromatography (HPLC). β-Carotene levels in ripe fruit varied from 0 to 166 μg·g-1 fresh weight, and carotenoid levels were from 1 to 896 μg·g-1 in ripe fruit in 1996. The range of values for β-carotene was similar in 1997, but that for total carotenoids was wider (4 to 1173 μg·g-1 fresh weight). Fresh fruit of the cultivars Greenleaf Tabasco, Pulla, Guajillo, NuMex Conquistador, Ring-O-Fire, and Thai Dragon contained greater amounts of β-carotene per 100 g fresh weight than the recommended dietary allowance (RDA) for vitamin A for the average adult. For dried Capsicum entries, New Mexican, aji, pasilla, and ancho types had the highest levels of β-carotene. In 1996, β-carotene levels among the dried Capsicum germplasm ranged from 2 to 739 μg·g-1 dry weight, and carotenoid levels from 111 to 6226 μg·g-1. Values were higher in 1997, ranging from 24 to 1198 μg·g-1 dry weight for β-carotene and from 187 to 10,121 μg·g-1 for total carotenoids. A pasilla type (C. annuum L.) had the highest total carotenoid content among the dried entries in both years.


Antioxidants ◽  
2021 ◽  
Vol 10 (2) ◽  
pp. 245
Author(s):  
María de la Luz Cádiz-Gurrea ◽  
Diana Pinto ◽  
Cristina Delerue-Matos ◽  
Francisca Rodrigues

Olea europaea cultivar, native in the Mediterranean basin, has expanded worldwide, mainly due to the olive oil industry. This expansion is attributed to the benefits of olive oil consumption, since this product is rich in nutritional and bioactive compounds. However, the olive industry generates high amounts of wastes, which could be related to polluting effects on soil and water. To minimize the environmental impact, different strategies of revalorization have been proposed. In this sense, the aim of this work was to develop high cosmetic value added oleuropein-enriched extracts (O20 and O30), a bioactive compound from olive byproducts, performing a comprehensive characterization using high performance liquid chromatography coupled to mass spectrometry and evaluate their bioactivity by in vitro assays. A total of 49 compounds were detected, with oleuropein and its derivatives widely found in O30 extract, whereas iridoids were mainly detected in O20 extract. Moreover, 10 compounds were detected for the first time in olive leaves. Both extracts demonstrated strong antioxidant and antiradical activities, although O30 showed higher values. In addition, radical oxygen and nitrogen species scavenging and enzyme inhibition values were higher in O30, with the exception of HOCl and hyaluronidase inhibition assays. Regarding cell viability, olive byproduct extracts did not lead to a decrease in keratinocytes viability until 100 µg/mL. All data reported by the present study reflect the potential of industrial byproducts as cosmetic ingredients.


Antioxidants ◽  
2021 ◽  
Vol 10 (3) ◽  
pp. 380
Author(s):  
Katja Kramberger ◽  
Zala Jenko Pražnikar ◽  
Alenka Baruca Arbeiter ◽  
Ana Petelin ◽  
Dunja Bandelj ◽  
...  

Helichrysum arenarium (L.) Moench (abbrev. as HA) has a long tradition in European ethnomedicine and its inflorescences are approved as a herbal medicinal product. In the Mediterranean part of Europe, Helichrysum italicum (Roth) G. Don (abbrev. as HI) is more common. Since infusions from both plants are traditionally used, we aimed to compare their antioxidative potential using in vitro assays. Two morphologically distinct HI plants, HIa and HIb, were compared to a commercially available HA product. Genetic analysis using microsatellites confirmed a clear differentiation between HI and HA and suggested that HIb was a hybrid resulting from spontaneous hybridization from unknown HI subspecies. High-performance liquid chromatography–mass spectrometry analysis showed the highest amounts of hydroxycinnamic acids and total arzanol derivatives in HIa, whereas HIb was richest in monohydroxybenzoic acids, caffeic acids, and coumarins, and HA contained the highest amounts of flavonoids, especially flavanones. HIa exhibited the highest radical scavenging activity; it was more efficient in protecting different cell lines from induced oxidative stress and in inducing oxidative stress-related genes superoxide dismutase 1, catalase, and glutathione reductase 1. The antioxidative potential of HI was not only dependent on the morphological type of the plant but also on the harvest date, revealing important information for obtaining the best possible product. Considering the superior properties of HI compared to HA, the evaluation of HI as a medicinal plant could be recommended.


2000 ◽  
Vol 279 (5) ◽  
pp. H2241-H2248 ◽  
Author(s):  
Hiroshi Saito ◽  
Cam Patterson ◽  
Zhaoyong Hu ◽  
Marschall S. Runge ◽  
Ulka Tipnis ◽  
...  

Interleukin (IL)-6 reportedly has negative inotropic and hypertrophic effects on the heart. Here, we describe endotoxin-induced IL-6 in the heart that has not previously been well characterized. An intraperitoneal injection of a bacterial lipopolysaccharide into C57BL/6 mice induced IL-6 mRNA in the heart more strongly than in any other tissue examined. Induction of mRNA for two proinflammatory cytokines, IL-1β and tumor necrosis factor (TNF)-α, occurred rapidly before the induction of IL-6 mRNA and protein. Although stimulation of isolated rat neonatal myocardial cells with IL-1β or TNF-α induced IL-6 mRNA in vitro, nonmyocardial heart cells produced higher levels of IL-6 mRNA upon stimulation with IL-1β. In situ hybridization and immunohistochemical analyses localized the IL-6 expression primarily in nonmyocardial cells in vivo. Endotoxin-induced expression of cardiac IL-1β, TNF-α, and intercellular adhesion molecule 1 was augmented in IL-6-deficient mice compared with control mice. Thus cardiac IL-6, expressed mainly by nonmyocardial cells via IL-1β action during endotoxemia, is likely to suppress expression of proinflammatory mediators and to regulate itself via a negative feedback mechanism.


Author(s):  
Elena Andreea POP ◽  
Andrea BUNEA ◽  
Florina COPACIU ◽  
Carmen SOCACIU ◽  
Adela PINTEA

Apricots are well known for the high content of bioactive compounds such as carotenoids, polyphenols, vitamins and minerals. Several studies have pointed out the chemical composition or the biological effects of apricots, but limited information are available regarding the stability of active compounds during storage or processing. The aim of this study was to determine the stability of major carotenoids in commercial dried apricots during storage.Carotenoids were extracted monthly from dried apricots kept in a dark environment, at room temperature, for twelve months. Total carotenoids were determined using the spectrophotometric method while the most relevant carotenoids were analyzed by high-performance liquid chromatography-photodiode array detection (HPLC-PDA) on a C30 column and using a gradient elution system.Initial carotenoid content of dried fruits was 6.72 mg/100g, while after six months of storage it decreased to 2.46 mg/100g. After twelve months of storage the total carotenoid content was 0.82 mg/100g, representing 20.35 % of the initial concentration. The major carotenoids identified in apricots were: all trans β-carotene, its geometrical isomers (9-cis-β-carotene; 13-cis-β-carotene; 9,13-di-cis β-carotene); β-carotene-5,8-epoxide; β-cryptoxanthin and β-cryptoxanthin palmitate. Significant decreases were observed for all pigments but all trans β-carotene appears to be the most sensitive pigment, with 15.7 % residual concentration. Although the concentrations of β-cryptoxanthin palmitate is small, it has shown significant increased stability compared to carotenes.


2020 ◽  
Vol 15 (4) ◽  
pp. 1934578X2092098 ◽  
Author(s):  
Hafiz Muhammad Khalid Abbas ◽  
He-Xun Huang ◽  
Wen-Jie Huang ◽  
Shu-Dan Xue ◽  
Shi-Juan Yan ◽  
...  

Cucurbita species ( Cucurbita moschata and Cucurbita maxima) are rich sources of nutrients, especially carotenoids and carbohydrates. Metabolites in pulps of C. moschata and C. maxima lines were examined by high-performance liquid chromatography and gas chromatography–mass spectrometry. Our results revealed that glucose and sucrose were the dominant sugars in C. maxima and C. moschata, respectively. A correlation was found between Brix percentage and sucrose levels as compared with glucose and fructose. A greater amount of myo-inositol had accumulated in C. moschata lines compared with C. maxima. Conversely, total carotenoids and antioxidant activity were found to be higher in C. maxima lines than in C. moschata. A strong correlation of glucose, fructose, and sucrose with β-carotene and violaxanthin revealed that it will be difficult to develop pumpkin cultivars with both high inositol and carotenoid levels. In conclusion, the composition of carbohydrates and carotenoids was more diverse in C. moschata lines than in C. maxima lines. Our results will contribute to a better understanding of metabolite changes in the fruits of these as well as other pumpkin species.


2020 ◽  
Vol 26 (6) ◽  
pp. 400-408
Author(s):  
Noemi Cazzaniga ◽  
Zsuzsanna Varga ◽  
Edith Nicol ◽  
Stéphane Bouchonnet

The UV-visible photodegradation of Naproxen (6-methoxy-α-methyl-2-naphthaleneacetic acid, CAS: 22204-53-1), one of the most used and detected non-steroidal anti-inflammatory drugs (NSAIDs) in the world, and its ecotoxicological consequences were investigated in an aqueous medium. The photo-transformation products were analyzed and the structures of photoproducts were elucidated using gas chromatography coupled with tandem mass spectrometry (GC-MS/MS) and high-performance liquid chromatography coupled with ultrahigh-resolution Fourier transform ion cyclotron resonance mass spectrometry (LC-FTICR-MS). Seven photoproducts were detected and characterized, photo-transformation mechanisms have been postulated to rationalize their formation under irradiation. In silico Q.S.A.R. (Quantitative Structure-Activity Relationship) toxicity predictions were performed with the Toxicity Estimation Software Tool (T.E.S.T.) and in vitro assays were carried out on Vibrio fischeri bacteria. Some of the obtained photoproducts exhibit higher potential toxicity than Naproxen itself but the whole toxicity of the irradiated solution is not of major concern.


Sign in / Sign up

Export Citation Format

Share Document