scholarly journals An Inducible and Secreted Eukaryote-Like Serine/Threonine Kinase of Salmonella enterica Serovar Typhi Promotes Intracellular Survival and Pathogenesis

2014 ◽  
Vol 83 (2) ◽  
pp. 522-533 ◽  
Author(s):  
Nagaraja Theeya ◽  
Atri Ta ◽  
Sayan Das ◽  
Rahul S. Mandal ◽  
Oishee Chakrabarti ◽  
...  

Eukaryote-like serine/threonine kinases (eSTKs) constitute an important family of bacterial virulence factors. Genome analysis had predicted putative eSTKs inSalmonella entericaserovar Typhi, although their functional characterization and the elucidation of their role in pathogenesis are still awaited. We show here that the primary sequence and secondary structure of thet4519locus ofSalmonellaTyphi Ty2 have all the signatures of eukaryotic superfamily kinases.t4519encodes a ∼39-kDa protein (T4519), which shows serine/threonine kinase activitiesin vitro. Recombinant T4519 (rT4519) is autophosphorylated and phosphorylates the universal substrate myelin basic protein. Infection of macrophages results in decreased viability of the mutant (Ty2Δt4519) strain, which is reversed by gene complementation. Moreover, reactive oxygen species produced by the macrophages signal to the bacteria to induce T4519, which is translocated to the host cell cytoplasm. That T4519 may target a host substrate(s) is further supported by the activation of host cellular signaling pathways and the induction of cytokines/chemokines. Finally, the role of T4519 in the pathogenesis ofSalmonellaTyphi is underscored by the significantly decreased mortality of mice infected with the Ty2Δt4519strain and the fact that the competitive index of this strain for causing systemic infection is 0.25% that of the wild-type strain. This study characterizes the first eSTK ofSalmonellaTyphi and demonstrates its role in promoting phagosomal survival of the bacteria within macrophages, which is a key determinant of pathogenesis. This, to the best of our knowledge, is the first study to describe the essential role of eSTKs in thein vivopathogenesis ofSalmonellaspp.

2019 ◽  
Vol 10 (1) ◽  
Author(s):  
Inyup Paik ◽  
Fulu Chen ◽  
Vinh Ngoc Pham ◽  
Ling Zhu ◽  
Jeong-Il Kim ◽  
...  

Abstract CONSTITUTIVELY PHOTOMORPHOGENIC1 (COP1) is a highly conserved E3 ubiquitin ligase from plants to animals and acts as a central repressor of photomorphogenesis in plants. SUPPRESSOR OF PHYA-105 1 family members (SPA1-SPA4) directly interact with COP1 and enhance COP1 activity. Despite the presence of a kinase domain at the N-terminus, no COP1-independent role of SPA proteins has been reported. Here we show that SPA1 acts as a serine/threonine kinase and directly phosphorylates PIF1 in vitro and in vivo. SPAs are necessary for the light-induced phosphorylation, ubiquitination and subsequent degradation of PIF1. Moreover, the red/far-red light photoreceptor phyB interacts with SPA1 through its C-terminus and enhances the recruitment of PIF1 for phosphorylation. These data provide a mechanistic view on how the COP1-SPA complexes serve as an example of a cognate kinase-E3 ligase complex that selectively triggers rapid phosphorylation and removal of its substrates, and how phyB modulates this process to promote photomorphogenesis.


2013 ◽  
Vol 80 (3) ◽  
pp. 896-906 ◽  
Author(s):  
Devendra H. Shah

ABSTRACTSalmonella entericaserovar Enteritidis is one of the important causes of bacterial food-borne gastroenteritis worldwide. Field strains ofS. Enteritidis are relatively genetically homogeneous; however, they show extensive phenotypic diversity and differences in virulence potential. RNA sequencing (RNA-Seq) was used to characterize differences in the global transcriptome between several genetically similar but phenotypically diverse poultry-associated field strains ofS. Enteritidis grown in laboratory medium at avian body temperature (42°C). TheseS. Enteritidis strains were previously characterized as high-pathogenicity (HP;n= 3) and low-pathogenicity (LP;n= 3) strains based on bothin vitroandin vivovirulence assays. Using the negative binomial distribution-based statistical tools edgeR and DESeq, 252 genes were identified as differentially expressed in LP strains compared with their expression in the HP strains (P< 0.05). A majority of genes (235, or 93.2%) showed significantly reduced expression, whereas a few genes (17, or 6.8%) showed increased expression in all LP strains compared with HP strains. LP strains showed a unique transcriptional profile that is characterized by significantly reduced expression of several transcriptional regulators and reduced expression of genes involved in virulence (e.g.,Salmonellapathogenicity island 1 [SPI-1], SPI-5, and fimbrial and motility genes) and protection against osmotic, oxidative, and other stresses, such as iron-limiting conditions commonly encountered within the host. Several functionally uncharacterized genes also showed reduced expression. This study provides a first concise view of the global transcriptional differences between field strains ofS. Enteritidis with various levels of pathogenicity, providing the basis for future functional characterization of several genes with potential roles in virulence or stress regulation ofS. Enteritidis.


2012 ◽  
Vol 80 (8) ◽  
pp. 2645-2654 ◽  
Author(s):  
Jooeun Lee ◽  
Kaoru Geddes ◽  
Catherine Streutker ◽  
Dana J. Philpott ◽  
Stephen E. Girardin

ABSTRACTPeptidoglycan recognition proteins (PGRPs) are a family of innate pattern recognition molecules that bind bacterial peptidoglycan. While the role of PGRPs inDrosophilainnate immunity has been extensively studied, how the four mammalian PGRP proteins (PGLYRP1 to PGLYRP4) contribute to host defense against bacterial pathogensin vivoremains poorly understood. PGLYRP1, PGLYRP3, and PGLYRP4 are directly bactericidalin vitro, whereas PGLYRP2 is anN-acetylmuramyl-l-alanine amidase that cleaves peptidoglycan between the sugar backbone and the peptide stem. Because PGLYRP2 cleaves muramyl peptides detected by host peptidoglycan sensors Nod1 and Nod2, we speculated that PGLYRP2 may act as a modifier of Nod1/Nod2-dependent innate immune responses. We investigated the role of PGLYRP2 inSalmonella entericaserovar Typhimurium-induced colitis, which is regulated by Nod1/Nod2 through the induction of an early Th17 response. PGLYRP2 did not contribute to expression of Th17-associated cytokines, interleukin-22 (IL-22)-dependent antimicrobial proteins, or inflammatory cytokines. However, we found thatPglyrp2-deficient mice displayed significantly enhanced inflammation in the cecum at 72 h postinfection, reflected by increased polymorphonuclear leukocyte (PMN) infiltration and goblet cell depletion.Pglyrp2expression was also induced in the cecum ofSalmonella-infected mice, and expression of green fluorescent protein under control of thePglyrp2promoter was increased in discrete populations of intraepithelial lymphocytes. Lastly,Nod2−/−Pglyrp2−/−mice displayed increased susceptibility to infection at 24 h postinfection compared toPglyrp2−/−mice, which correlated with increased PMN infiltration and submucosal edema. Thus, PGLYRP2 plays a protective rolein vivoin the control ofS. Typhimurium infection through a Nod1/Nod2-independent mechanism.


2016 ◽  
Vol 84 (7) ◽  
pp. 2076-2085 ◽  
Author(s):  
Lotte Jelsbak ◽  
Mie I. B. Mortensen ◽  
Mogens Kilstrup ◽  
John E. Olsen

Metabolic enzymes show a high degree of redundancy, and for that reason they are generally ignored in searches for novel targets for anti-infective substances. The enzymes PurN and PurT are redundantin vitroinSalmonella entericaserovar Typhimurium, in which they perform the third step of purine synthesis. Surprisingly, the results of the current study demonstrated that single-gene deletions of each of the genes encoding these enzymes caused attenuation (competitive infection indexes [CI] of <0.03) in mouse infections. While the ΔpurTmutant multiplied as fast as the wild-type strain in cultured J774A.1 macrophages, net multiplication of the ΔpurNmutant was reduced approximately 50% in 20 h. The attenuation of the ΔpurTmutant was abolished by simultaneous removal of the enzyme PurU, responsible for the formation of formate, indicating that the attenuation was related to formate accumulation or wasteful consumption of formyl tetrahydrofolate by PurU. In the process of further characterization, we disclosed that the glycine cleavage system (GCV) was the most important for formation of C1unitsin vivo(CI = 0.03 ± 0.03). In contrast, GlyA was the only important enzyme for the formation of C1unitsin vitro. The results with the ΔgcvTmutant further revealed that formation of serine by SerA and further conversion of serine into C1units and glycine by GlyA were not sufficient to ensure C1formation inS. Typhimuriumin vivo. The results of the present study call for reinvestigations of the concept of metabolic redundancy inS. Typhimuriumin vivo.


2021 ◽  
Vol 2021 ◽  
pp. 1-17
Author(s):  
Yufeng Zhang ◽  
Sheng Zhang ◽  
Yi Wang ◽  
Zhiqiang Yang ◽  
Zhe Chen ◽  
...  

Bone resorption diseases, including osteoporosis, are usually caused by excessive osteoclastogenesis. Unc-51-like autophagy activating kinase 1 (ULK1), a mammalian serine/threonine kinase, may participate in the regulation of bone homeostasis and osteolytic metastasis. In this study, ULK1 expression during osteoclastogenesis was detected with RT-PCR. We knocked down or overexpressed ULK1 through siRNA or lentiviral transduction in bone marrow macrophage (BMM). TRAP and phalloidin staining were performed to detect the osteoclastogenesis activity. Ovariectomized (OVX) mouse model of osteoporosis and a mouse of model osteoclast-induced bone resorption were applied to explore the role of ULK1 in bone resorption in vivo. The results showed that ULK1 expression was downregulated during osteoclast differentiation and was clinically associated with osteoporosis. ULK1 inhibited osteoclast differentiation in vitro. Knockdown of ULK1 expression activated phosphorylation of c-Jun N-terminal kinase (JNK) and spleen tyrosine kinase (Syk). Docking protein 3 (DOK3) was coexpressed with ULK1 during osteoclastogenesis. Downregulation of DOK3 offsets the effect of ULK1 on osteoclastogenesis and induced phosphorylation of JNK and Syk. Activation of ULK1 impeded bone loss in OVX mice with osteoporosis. Additionally, upregulation of ULK1 inhibited osteoclast-induced bone resorption in vivo. Therefore, our study reveals a novel ULK1/DOK3/Syk axis that regulates osteoclast differentiation and bone resorption, and targeting ULK1 is a potential therapeutic strategy for osteoporosis.


2003 ◽  
Vol 77 (20) ◽  
pp. 11274-11278 ◽  
Author(s):  
B. W. A. van der Strate ◽  
J. L. Hillebrands ◽  
S. S. Lycklama à Nijeholt ◽  
L. Beljaars ◽  
C. A. Bruggeman ◽  
...  

ABSTRACT The role of leukocytes in the in vivo dissemination of cytomegalovirus was studied in this experiment. Rat cytomegalovirus (RCMV) could be transferred to rat granulocytes and monocytes by cocultivation with RCMV-infected fibroblasts in vitro. Intravenous injection of purified infected granulocytes or monocytes resulted in a systemic infection in rats, indicating that our model is a powerful tool to gain further insight into CMV dissemination and the development of new antivirals.


2012 ◽  
Vol 57 (1) ◽  
pp. 445-451 ◽  
Author(s):  
Ilka Tiemy Kato ◽  
Renato Araujo Prates ◽  
Caetano Padial Sabino ◽  
Beth Burgwyn Fuchs ◽  
George P. Tegos ◽  
...  

ABSTRACTThe objective of this study was to evaluate whetherCandida albicansexhibits altered pathogenicity characteristics following sublethal antimicrobial photodynamic inactivation (APDI) and if such alterations are maintained in the daughter cells.C. albicanswas exposed to sublethal APDI by using methylene blue (MB) as a photosensitizer (0.05 mM) combined with a GaAlAs diode laser (λ 660 nm, 75 mW/cm2, 9 to 27 J/cm2).In vitro, we evaluated APDI effects onC. albicansgrowth, germ tube formation, sensitivity to oxidative and osmotic stress, cell wall integrity, and fluconazole susceptibility.In vivo, we evaluatedC. albicanspathogenicity with a mouse model of systemic infection. Animal survival was evaluated daily. Sublethal MB-mediated APDI reduced the growth rate and the ability ofC. albicansto form germ tubes compared to untreated cells (P< 0.05). Survival of mice systemically infected withC. albicanspretreated with APDI was significantly increased compared to mice infected with untreated yeast (P< 0.05). APDI increasedC. albicanssensitivity to sodium dodecyl sulfate, caffeine, and hydrogen peroxide. The MIC for fluconazole forC. albicanswas also reduced following sublethal MB-mediated APDI. However, none of those pathogenic parameters was altered in daughter cells ofC. albicanssubmitted to APDI. These data suggest that APDI may inhibit virulence factors and reducein vivopathogenicity ofC. albicans. The absence of alterations in daughter cells indicates that APDI effects are transitory. The MIC reduction for fluconazole following APDI suggests that this antifungal could be combined with APDI to treatC. albicansinfections.


Author(s):  
Adrian Rafael Murillo-de-Ozores ◽  
Alejandro Rodriguez-Gama ◽  
Hector Carbajal-Contreras ◽  
Gerardo Gamba ◽  
Maria Castaneda-Bueno

With No Lysine (K) kinase 4 (WNK4) belongs to a serine-threonine kinase family characterized by the atypical positioning of its catalytic lysine. Despite the fact that WNK4 has been found in many tissues, the majority of its study has revolved around its function in the kidney, specifically as a positive regulator of the thiazide-sensitive NaCl cotransporter (NCC) in the distal convoluted tubule (DCT) of the nephron. This is explained by the description of gain-of-function mutations in the gene encoding WNK4 that cause Familial Hyperkalemic Hypertension (FHHt). This disease is mainly driven by increased downstream activation of the Ste20-related Proline Alanine Rich Kinase (SPAK)/Oxidative Stress Responsive Kinase 1 (OSR1)-NCC pathway, which increases salt reabsorption in the DCT and indirectly impairs renal K+ secretion. Here, we review the large volume of information that has accumulated about different aspects of WNK4 function. We first review the knowledge on WNK4 structure and enumerate the functional domains and motifs that have been characterized. Then, we discuss WNK4 physiological functions based on the information obtained from in vitro studies and from a diverse set of genetically modified mouse models with altered WNK4 function. We then review in vitro and in vivo evidence on the different levels of regulation of WNK4. Finally, we go through the evidence that has suggested how different physiological conditions act through WNK4 to modulate NCC activity.


2017 ◽  
Vol 85 (4) ◽  
Author(s):  
Jonathan L. Portman ◽  
Qiongying Huang ◽  
Michelle L. Reniere ◽  
Anthony T. Iavarone ◽  
Daniel A. Portnoy

ABSTRACT Cholesterol-dependent cytolysins (CDCs) represent a family of homologous pore-forming proteins secreted by many Gram-positive bacterial pathogens. CDCs mediate membrane binding partly through a conserved C-terminal undecapeptide, which contains a single cysteine residue. While mutational changes to other residues in the undecapeptide typically have severe effects, mutation of the cysteine residue to alanine has minor effects on overall protein function. Thus, the role of this highly conserved reactive cysteine residue remains largely unknown. We report here that the CDC listeriolysin O (LLO), secreted by the facultative intracellular pathogen Listeria monocytogenes, was posttranslationally modified by S-glutathionylation at this conserved cysteine residue and that either endogenously synthesized or exogenously added glutathione was sufficient to form this modification. When recapitulated with purified protein in vitro, this modification completely ablated the activity of LLO, and this inhibitory effect was fully reversible by treatment with reducing agents. A cysteine-to-alanine mutation in LLO rendered the protein completely resistant to inactivation by S-glutathionylation, and a mutant expressing this mutation retained full hemolytic activity. A mutant strain of L. monocytogenes expressing the cysteine-to-alanine variant of LLO was able to infect and replicate within bone marrow-derived macrophages indistinguishably from the wild type in vitro, yet it was attenuated 4- to 6-fold in a competitive murine infection model in vivo. This study suggests that S-glutathionylation may represent a mechanism by which CDC-family proteins are posttranslationally modified and regulated and help explain an evolutionary pressure to retain the highly conserved undecapeptide cysteine.


2018 ◽  
Vol 86 (9) ◽  
Author(s):  
Vivek Belde ◽  
Matthew P. Cravens ◽  
Dania Gulandijany ◽  
Justin A. Walker ◽  
Isabel Palomo-Caturla ◽  
...  

ABSTRACTB cell antigen receptor (BCR) diversity increases by several orders of magnitude due to the action of terminal deoxynucleotidyl transferase (TdT) during V(D)J recombination. Unlike adults, infants have limited BCR diversity, in part due to reduced expression of TdT. Since human infants and young mice respond poorly to polysaccharide vaccines, such as the pneumococcal polysaccharide vaccine Pneumovax23 and Vi polysaccharide (ViPS) ofSalmonella entericaserovar Typhi, we tested the contribution of TdT-mediated BCR diversity in response to these vaccines. We found that TdT+/−and TdT−/−mice generated comparable antibody responses to Pneumovax23 and survivedStreptococcus pneumoniaechallenge. Moreover, passive immunization of B cell-deficient mice with serum from Pneumovax23-immunized TdT+/−or TdT−/−mice conferred protection. TdT+/−and TdT−/−mice generated comparable levels of anti-ViPS antibodies and antibody-dependent, complement-mediated bactericidal activity againstS. Typhiin vitro. To test the protective immunity conferred by ViPS immunizationin vivo, TdT+/−and TdT−/−mice were challenged with a chimericSalmonella entericaserovar Typhimurium strain expressing ViPS, since mice are nonpermissive hosts forS. Typhi infection. Compared to their unimmunized counterparts, immunized TdT+/−and TdT−/−mice challenged with ViPS-expressingS. Typhimurium exhibited a significant reduction in the bacterial burden and liver pathology. These data suggest that the impaired antibody response to the Pneumovax23 and ViPS vaccines in the young is not due to limited TdT-mediated BCR diversification.


Sign in / Sign up

Export Citation Format

Share Document