scholarly journals Evolution of Vitamin B2 Biosynthesis: 6,7-Dimethyl-8-Ribityllumazine Synthases of Brucella

2006 ◽  
Vol 188 (17) ◽  
pp. 6135-6142 ◽  
Author(s):  
Vanesa Zylberman ◽  
Sebastián Klinke ◽  
Ilka Haase ◽  
Adelbert Bacher ◽  
Markus Fischer ◽  
...  

ABSTRACT The penultimate step in the biosynthesis of riboflavin (vitamin B2) involves the condensation of 3,4-dihydroxy-2-butanone 4-phosphate with 5-amino-6-ribitylamino-2,4(1H,3H)-pyrimidinedione, which is catalyzed by 6,7-dimethyl-8-ribityllumazine synthase (lumazine synthase). Pathogenic Brucella species adapted to an intracellular lifestyle have two genes involved in riboflavin synthesis, ribH1 and ribH2, which are located on different chromosomes. The ribH2 gene was shown previously to specify a lumazine synthase (type II lumazine synthase) with an unusual decameric structure and a very high Km for 3,4-dihydroxy-2-butanone 4-phosphate. Moreover, the protein was found to be an immunodominant Brucella antigen and was able to generate strong humoral as well as cellular immunity against Brucella abortus in mice. We have now cloned and expressed the ribH1 gene, which is located inside a small riboflavin operon, together with two other putative riboflavin biosynthesis genes and the nusB gene, specifying an antitermination factor. The RibH1 protein (type I lumazine synthase) is a homopentamer catalyzing the formation of 6,7-dimethyl-8-ribityllumazine at a rate of 18 nmol mg−1 min−1. Sequence comparison of lumazine synthases from archaea, bacteria, plants, and fungi suggests a family of proteins comprising archaeal lumazine and riboflavin synthases, type I lumazine synthases, and the eubacterial type II lumazine synthases.

2000 ◽  
Vol 203 (21) ◽  
pp. 3279-3287 ◽  
Author(s):  
M.E. Castello ◽  
P.A. Aguilera ◽  
O. Trujillo-Cenoz ◽  
A.A. Caputi

This paper describes the peripheral mechanisms involved in signal processing of self- and conspecific-generated electric fields by the electric fish Gymnotus carapo. The distribution of the different types of tuberous electroreceptor and the occurrence of particular electric field patterns close to the body of the fish were studied. The density of tuberous electroreceptors was found to be maximal on the jaw (foveal region) and very high on the dorsal region of the snout (parafoveal region), decaying caudally. Tuberous type II electroreceptors were much more abundant than type I electroreceptors. Type I electroreceptors occurred exclusively on the head and rostral trunk regions, while type II electroreceptors were found along as much as 90 % of the fish. Electrophysiological data indicated that conspecific- and self-generated electric currents are ‘funnelled’ by the high conductivity and geometry of the body of the fish. These currents are concentrated at the peri-oral zone, where most electroreceptors are located. Moreover, within this region, field vector directions were collimated, constituting the most efficient stimulus for electroreceptors. It can be concluded that the passive properties of the fish tissue represent a pre-receptor device that enhances exafferent and reafferent electrical signals at the fovea-parafoveal region.


2021 ◽  
Vol 5 (2) ◽  
Author(s):  
Sher Zaman

The incidence of Diabetes Mellitus (DM) type I and type II is very high all over the world. Excessive glucose levels and failure of one’s body to produce or manage glucose, trigger diabetes. Glucose is known to be responsive to NIH3T3 cells as it alters the expression of a range of genes associated with inflammation and apoptosis. In this study, the toxic effect of glucose was evaluated on NIH3T3 fibroblasts. Cells (NIH3T3) were cultured in media (DMEM), supplemented with 10% FBS and 1% Penicillin-Streptomycin. MTT assay was performed to check the toxic effect of glucose. NIH3T3 cells were treated with high glucose (30mM) for 24 hours. Trizol was used to extract the RNA followed by PCR reactions for gene expression analysis. Glucose treatment for 24 hours, modulated the expression of BCL-2 and BAX genes. The expression of BCL-2 was reduced while a significant increase was noticed in the expression BAX gene. Our results illustrated that glucose has some toxic effects on NIH3T3 cells. Glucose induces apoptosis by upregulating BAX and down-regulating BCL-2 expressions.


2013 ◽  
Vol 288 (29) ◽  
pp. 21228-21235 ◽  
Author(s):  
Austin J. Rice ◽  
Frances J. D. Alvarez ◽  
Kathryn M. Schultz ◽  
Candice S. Klug ◽  
Amy L. Davidson ◽  
...  

In bacteria, ATP-binding cassette (ABC) transporters are vital for the uptake of nutrients and cofactors. Based on differences in structure and activity, ABC importers are divided into two types. Type I transporters have been well studied and employ a tightly regulated alternating access mechanism. Less is known about Type II importers, but much of what we do know has been observed in studies of the vitamin B12 importer BtuC2D2. MolB2C2 (formally known as HI1470/71) is also a Type II importer, but its substrate, molybdate, is ∼10-fold smaller than vitamin B12. To understand mechanistic differences among Type II importers, we focused our studies on MolBC, for which alternative conformations may be required to transport its relatively small substrate. To investigate the mechanism of MolBC, we employed disulfide cross-linking and EPR spectroscopy. From these studies, we found that nucleotide binding is coupled to a conformational shift at the periplasmic gate. Unlike the larger conformational changes in BtuCD-F, this shift in MolBC-A is akin to unlocking a swinging door: allowing just enough space for molybdate to slip into the cell. The lower cytoplasmic gate, identified in BtuCD-F as “gate I,” remains open throughout the MolBC-A mechanism, and cytoplasmic gate II closes in the presence of nucleotide. Combining our results, we propose a peristaltic mechanism for MolBC-A, which gives new insight in the transport of small substrates by a Type II importer.


Author(s):  
Ronald S. Weinstein ◽  
N. Scott McNutt

The Type I simple cold block device was described by Bullivant and Ames in 1966 and represented the product of the first successful effort to simplify the equipment required to do sophisticated freeze-cleave techniques. Bullivant, Weinstein and Someda described the Type II device which is a modification of the Type I device and was developed as a collaborative effort at the Massachusetts General Hospital and the University of Auckland, New Zealand. The modifications reduced specimen contamination and provided controlled specimen warming for heat-etching of fracture faces. We have now tested the Mass. General Hospital version of the Type II device (called the “Type II-MGH device”) on a wide variety of biological specimens and have established temperature and pressure curves for routine heat-etching with the device.


Author(s):  
G. D. Gagne ◽  
M. F. Miller ◽  
D. A. Peterson

Experimental infection of chimpanzees with non-A, non-B hepatitis (NANB) or with delta agent hepatitis results in the appearance of characteristic cytoplasmic alterations in the hepatocytes. These alterations include spongelike inclusions (Type I), attached convoluted membranes (Type II), tubular structures (Type III), and microtubular aggregates (Type IV) (Fig. 1). Type I, II and III structures are, by association, believed to be derived from endoplasmic reticulum and may be morphogenetically related. Type IV structures are generally observed free in the cytoplasm but sometimes in the vicinity of type III structures. It is not known whether these structures are somehow involved in the replication and/or assembly of the putative NANB virus or whether they are simply nonspecific responses to cellular injury. When treated with uranyl acetate, type I, II and III structures stain intensely as if they might contain nucleic acids. If these structures do correspond to intermediates in the replication of a virus, one might expect them to contain DNA or RNA and the present study was undertaken to explore this possibility.


Author(s):  
T.A. Fassel ◽  
M.J. Schaller ◽  
M.E. Lidstrom ◽  
C.C. Remsen

Methylotrophic bacteria play an Important role in the environment in the oxidation of methane and methanol. Extensive intracytoplasmic membranes (ICM) have been associated with the oxidation processes in methylotrophs and chemolithotrophic bacteria. Classification on the basis of ICM arrangement distinguishes 2 types of methylotrophs. Bundles or vesicular stacks of ICM located away from the cytoplasmic membrane and extending into the cytoplasm are present in Type I methylotrophs. In Type II methylotrophs, the ICM form pairs of peripheral membranes located parallel to the cytoplasmic membrane. Complex cell wall structures of tightly packed cup-shaped subunits have been described in strains of marine and freshwater phototrophic sulfur bacteria and several strains of methane oxidizing bacteria. We examined the ultrastructure of the methylotrophs with particular view of the ICM and surface structural features, between representatives of the Type I Methylomonas albus (BG8), and Type II Methylosinus trichosporium (OB-36).


1987 ◽  
Vol 48 (C5) ◽  
pp. C5-525-C5-528 ◽  
Author(s):  
K. J. MOORE ◽  
P. DAWSON ◽  
C. T. FOXON
Keyword(s):  
Type I ◽  
Type Ii ◽  

2020 ◽  
pp. 37-55 ◽  
Author(s):  
A. E. Shastitko ◽  
O. A. Markova

Digital transformation has led to changes in business models of traditional players in the existing markets. What is more, new entrants and new markets appeared, in particular platforms and multisided markets. The emergence and rapid development of platforms are caused primarily by the existence of so called indirect network externalities. Regarding to this, a question arises of whether the existing instruments of competition law enforcement and market analysis are still relevant when analyzing markets with digital platforms? This paper aims at discussing advantages and disadvantages of using various tools to define markets with platforms. In particular, we define the features of the SSNIP test when being applyed to markets with platforms. Furthermore, we analyze adjustment in tests for platform market definition in terms of possible type I and type II errors. All in all, it turns out that to reduce the likelihood of type I and type II errors while applying market definition technique to markets with platforms one should consider the type of platform analyzed: transaction platforms without pass-through and non-transaction matching platforms should be tackled as players in a multisided market, whereas non-transaction platforms should be analyzed as players in several interrelated markets. However, if the platform is allowed to adjust prices, there emerges additional challenge that the regulator and companies may manipulate the results of SSNIP test by applying different models of competition.


Sign in / Sign up

Export Citation Format

Share Document