scholarly journals EPR Spectroscopy of MolB2C2-A Reveals Mechanism of Transport for a Bacterial Type II Molybdate Importer

2013 ◽  
Vol 288 (29) ◽  
pp. 21228-21235 ◽  
Author(s):  
Austin J. Rice ◽  
Frances J. D. Alvarez ◽  
Kathryn M. Schultz ◽  
Candice S. Klug ◽  
Amy L. Davidson ◽  
...  

In bacteria, ATP-binding cassette (ABC) transporters are vital for the uptake of nutrients and cofactors. Based on differences in structure and activity, ABC importers are divided into two types. Type I transporters have been well studied and employ a tightly regulated alternating access mechanism. Less is known about Type II importers, but much of what we do know has been observed in studies of the vitamin B12 importer BtuC2D2. MolB2C2 (formally known as HI1470/71) is also a Type II importer, but its substrate, molybdate, is ∼10-fold smaller than vitamin B12. To understand mechanistic differences among Type II importers, we focused our studies on MolBC, for which alternative conformations may be required to transport its relatively small substrate. To investigate the mechanism of MolBC, we employed disulfide cross-linking and EPR spectroscopy. From these studies, we found that nucleotide binding is coupled to a conformational shift at the periplasmic gate. Unlike the larger conformational changes in BtuCD-F, this shift in MolBC-A is akin to unlocking a swinging door: allowing just enough space for molybdate to slip into the cell. The lower cytoplasmic gate, identified in BtuCD-F as “gate I,” remains open throughout the MolBC-A mechanism, and cytoplasmic gate II closes in the presence of nucleotide. Combining our results, we propose a peristaltic mechanism for MolBC-A, which gives new insight in the transport of small substrates by a Type II importer.

IUCrJ ◽  
2021 ◽  
Vol 9 (1) ◽  
Author(s):  
Dongqing Pan ◽  
Ryo Oyama ◽  
Tomomi Sato ◽  
Takanori Nakane ◽  
Ryo Mizunuma ◽  
...  

CmABCB1 is a Cyanidioschyzon merolae homolog of human ABCB1, a well known ATP-binding cassette (ABC) transporter responsible for multi-drug resistance in various cancers. Three-dimensional structures of ABCB1 homologs have revealed the snapshots of inward- and outward-facing states of the transporters in action. However, sufficient information to establish the sequential movements of the open–close cycles of the alternating-access model is still lacking. Serial femtosecond crystallography (SFX) using X-ray free-electron lasers has proven its worth in determining novel structures and recording sequential conformational changes of proteins at room temperature, especially for medically important membrane proteins, but it has never been applied to ABC transporters. In this study, 7.7 monoacylglycerol with cholesterol as the host lipid was used and obtained well diffracting microcrystals of the 130 kDa CmABCB1 dimer. Successful SFX experiments were performed by adjusting the viscosity of the crystal suspension of the sponge phase with hydroxypropyl methylcellulose and using the high-viscosity sample injector for data collection at the SACLA beamline. An outward-facing structure of CmABCB1 at a maximum resolution of 2.22 Å is reported, determined by SFX experiments with crystals formed in the lipidic cubic phase (LCP-SFX), which has never been applied to ABC transporters. In the type I crystal, CmABCB1 dimers interact with adjacent molecules via not only the nucleotide-binding domains but also the transmembrane domains (TMDs); such an interaction was not observed in the previous type II crystal. Although most parts of the structure are similar to those in the previous type II structure, the substrate-exit region of the TMD adopts a different configuration in the type I structure. This difference between the two types of structures reflects the flexibility of the substrate-exit region of CmABCB1, which might be essential for the smooth release of various substrates from the transporter.


2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Seiya Watanabe ◽  
Yohsuke Murase ◽  
Yasunori Watanabe ◽  
Yasuhiro Sakurai ◽  
Kunihiko Tajima

AbstractAconitase superfamily members catalyze the homologous isomerization of specific substrates by sequential dehydration and hydration and contain a [4Fe-4S] cluster. However, monomeric and heterodimeric types of function unknown aconitase X (AcnX) have recently been characterized as a cis-3-hydroxy-L-proline dehydratase (AcnXType-I) and mevalonate 5-phosphate dehydratase (AcnXType-II), respectively. We herein elucidated the crystal structures of AcnXType-I from Agrobacterium tumefaciens (AtAcnX) and AcnXType-II from Thermococcus kodakarensis (TkAcnX) without a ligand and in complex with substrates. AtAcnX and TkAcnX contained the [2Fe-2S] and [3Fe-4S] clusters, respectively, conforming to UV and EPR spectroscopy analyses. The binding sites of the [Fe-S] cluster and substrate were clearlydifferent from those that were completely conserved in other aconitase enzymes; however, theoverall structural frameworks and locations of active sites were partially similar to each other.These results provide novel insights into the evolutionary scenario of the aconitase superfamilybased on the recruitment hypothesis.


2015 ◽  
Vol 43 (5) ◽  
pp. 1023-1032 ◽  
Author(s):  
Thomas Stockner ◽  
Anna Mullen ◽  
Fraser MacMillan

ABC transporters are primary active transporters found in all kingdoms of life. Human multidrug resistance transporter ABCB1, or P-glycoprotein, has an extremely broad substrate spectrum and confers resistance against chemotherapy drug treatment in cancer cells. The bacterial ABC transporter MsbA is a lipid A flippase and a homolog to the human ABCB1 transporter, with which it partially shares its substrate spectrum. Crystal structures of MsbA and ABCB1 have been solved in multiple conformations, providing a glimpse into the possible conformational changes the transporter could be going through during the transport cycle. Crystal structures are inherently static, while a dynamic picture of the transporter in motion is needed for a complete understanding of transporter function. Molecular dynamics (MD) simulations and electron paramagnetic resonance (EPR) spectroscopy can provide structural information on ABC transporters, but the strength of these two methods lies in the potential to characterise the dynamic regime of these transporters. Information from the two methods is quite complementary. MD simulations provide an all atom dynamic picture of the time evolution of the molecular system, though with a narrow time window. EPR spectroscopy can probe structural, environmental and dynamic properties of the transporter in several time regimes, but only through the attachment sites of an exogenous spin label. In this review the synergistic effects that can be achieved by combining the two methods are highlighted, and a brief methodological background is also presented.


2011 ◽  
Vol 21 (23) ◽  
pp. 7041-7044 ◽  
Author(s):  
Laura Casu ◽  
Filippo Cottiglia ◽  
Marco Leonti ◽  
Alessandro De Logu ◽  
Emanuela Agus ◽  
...  
Keyword(s):  
Type I ◽  
Type Ii ◽  

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Bárbara Abreu ◽  
Carlos Cruz ◽  
A. Sofia F. Oliveira ◽  
Cláudio M. Soares

AbstractATP binding cassette (ABC) transporters employ ATP hydrolysis to harness substrate translocation across membranes. The Escherichia coli MalFGK2E maltose importer is an example of a type I ABC importer and a model system for this class of ABC transporters. The MalFGK2E importer is responsible for the intake of malto-oligossacharides in E.coli. Despite being extensively studied, little is known about the effect of ATP hydrolysis and nucleotide exit on substrate transport. In this work, we studied this phenomenon using extensive molecular dynamics simulations (MD) along with potential of mean force calculations of maltose transport across the pore, in the pre-hydrolysis, post-hydrolysis and nucleotide-free states. We concluded that ATP hydrolysis and nucleotide exit trigger conformational changes that result in the decrease of energetic barriers to maltose translocation towards the cytoplasm, with a concomitant increase of the energy barrier in the periplasmic side of the pore, contributing for the irreversibility of the process. We also identified key residues that aid in positioning and orientation of maltose, as well as a novel binding pocket for maltose in MalG. Additionally, ATP hydrolysis leads to conformations similar to the nucleotide-free state. This study shows the contribution of ATP hydrolysis and nucleotide exit in the transport cycle, shedding light on ABC type I importer mechanisms.


Author(s):  
Yuji Ashikawa ◽  
Zui Fujimoto ◽  
Kengo Inoue ◽  
Hisakazu Yamane ◽  
Hideaki Nojiri

Carbazole 1,9a-dioxygenase (CARDO), which consists of an oxygenase component and the electron-transport components ferredoxin (CARDO-F) and ferredoxin reductase (CARDO-R), is a Rieske nonheme iron oxygenase (RO). ROs are classified into five subclasses (IA, IB, IIA, IIB and III) based on their number of constituents and the nature of their redox centres. In this study, two types of crystal structure (type I and type II) were resolved of the class III CARDO-R from Janthinobacterium sp. J3 (CARDO-RJ3). Superimposition of the type I and type II structures revealed the absence of flavin adenine dinucleotide (FAD) in the type II structure along with significant conformational changes to the FAD-binding domain and the C-terminus, including movements to fill the space in which FAD had been located. Docking simulation of NADH into the FAD-bound form of CARDO-RJ3 suggested that shifts of the residues at the C-terminus caused the nicotinamide moiety to approach the N5 atom of FAD, which might facilitate electron transfer between the redox centres. Differences in domain arrangement were found compared with RO reductases from the ferredoxin–NADP reductase family, suggesting that these differences correspond to differences in the structures of their redox partners ferredoxin and terminal oxygenase. The results of docking simulations with the redox partner class III CARDO-F from Pseudomonas resinovorans CA10 suggested that complex formation suitable for efficient electron transfer is stabilized by electrostatic attraction and complementary shapes of the interacting regions.


Author(s):  
María Florencia Carusela ◽  
J. Miguel Rubi

To explain the increased transport of nutrients and metabolites and to control the movement of drug molecules through the transporters to the cancer cells, it is important to understand the exact mechanism of their structure and activity, as well as their biological and physical characteristics. We propose a computational model that reproduces the functionality of membrane transporters by quantifying the flow of substrates through the cell membrane. The model identifies the force induced by conformational changes of the transporter due to hydrolysis of ATP, in ABC transporters, or by an electrochemical gradient of ions, in secondary transporters. The transport rate is computed by averaging the velocity generated by the force along the paths followed by the substrates. The results obtained are in accordance with the experiments. The model provides an overall framework for analyzing the membrane transport proteins that regulate the flows of ions, nutrients and other molecules across the cell membranes, and their activities.


2006 ◽  
Vol 188 (17) ◽  
pp. 6135-6142 ◽  
Author(s):  
Vanesa Zylberman ◽  
Sebastián Klinke ◽  
Ilka Haase ◽  
Adelbert Bacher ◽  
Markus Fischer ◽  
...  

ABSTRACT The penultimate step in the biosynthesis of riboflavin (vitamin B2) involves the condensation of 3,4-dihydroxy-2-butanone 4-phosphate with 5-amino-6-ribitylamino-2,4(1H,3H)-pyrimidinedione, which is catalyzed by 6,7-dimethyl-8-ribityllumazine synthase (lumazine synthase). Pathogenic Brucella species adapted to an intracellular lifestyle have two genes involved in riboflavin synthesis, ribH1 and ribH2, which are located on different chromosomes. The ribH2 gene was shown previously to specify a lumazine synthase (type II lumazine synthase) with an unusual decameric structure and a very high Km for 3,4-dihydroxy-2-butanone 4-phosphate. Moreover, the protein was found to be an immunodominant Brucella antigen and was able to generate strong humoral as well as cellular immunity against Brucella abortus in mice. We have now cloned and expressed the ribH1 gene, which is located inside a small riboflavin operon, together with two other putative riboflavin biosynthesis genes and the nusB gene, specifying an antitermination factor. The RibH1 protein (type I lumazine synthase) is a homopentamer catalyzing the formation of 6,7-dimethyl-8-ribityllumazine at a rate of 18 nmol mg−1 min−1. Sequence comparison of lumazine synthases from archaea, bacteria, plants, and fungi suggests a family of proteins comprising archaeal lumazine and riboflavin synthases, type I lumazine synthases, and the eubacterial type II lumazine synthases.


2012 ◽  
Vol 58 (5) ◽  
pp. 553-562 ◽  
Author(s):  
Mohammad Adnan Syed ◽  
Céline M. Lévesque

Most prokaryotic chromosomes contain a number of toxin–antitoxin (TA) modules consisting of a pair of genes that encode 2 components, a stable toxin and its cognate labile antitoxin. TA systems are also known as addiction modules, since the cells become “addicted” to the short-lived antitoxin product (the unstable antitoxin is degraded faster than the more stable toxin) because its de novo synthesis is essential for their survival. While toxins are always proteins, antitoxins are either RNAs (type I, type III) or proteins (type II). Type II TA systems are widely distributed throughout the chromosomes of almost all free-living bacteria and archaea. The vast majority of type II toxins are mRNA-specific endonucleases arresting cell growth through the mechanism of RNA cleavage, thus preventing the translation process. The physiological role of chromosomal type II TA systems still remains the subject of debate. This review describes the currently known type II toxins and their characteristics. The different hypotheses that have been proposed to explain their role in bacterial physiology are also discussed.


2021 ◽  
Author(s):  
Maria Claudia Villegas Kcam ◽  
Annette J. Tsong ◽  
James Chappell

ABSTRACTSynthetic gene regulators based upon CRISPR-Cas systems offer highly programmable technologies to control gene expression in bacteria. Bacterial CRISPR activators (CRISPRa) have been developed that use engineered type II CRISPR-dCas9 to localize transcription activation domains near promoter elements to activate transcription. However, several reports have demonstrated distance-dependent requirements and periodical activation patterns that overall limit the flexibility of these systems. Here, we demonstrate the potential of using an alternative type I-E CRISPR-Cas system to create a CRISPRa with distinct and expanded regulatory properties. We create the first bacterial CRISPRa system based upon a type I-E CRISPR-Cas, and demonstrate differences in the activation range of this system compared to type II CRISPRa systems. Furthermore, we characterize the distance-dependent activation patterns of type I-E CRISPRa to reveal a distinct and more frequent periodicity of activation.


Sign in / Sign up

Export Citation Format

Share Document