scholarly journals Just-in-Time Control of Spo0A Synthesis in Bacillus subtilis by Multiple Regulatory Mechanisms

2011 ◽  
Vol 193 (22) ◽  
pp. 6366-6374 ◽  
Author(s):  
Arnaud Chastanet ◽  
Richard Losick

The response regulator Spo0A governs multiple developmental processes inBacillus subtilis, including most conspicuously sporulation. Spo0A is activated by phosphorylation via a multicomponent phosphorelay. Previous work has shown that the Spo0A protein is not rate limiting for sporulation. Rather, Spo0A is present at high levels in growing cells, rapidly rising to yet higher levels under sporulation-inducing conditions, suggesting that synthesis of the response regulator is subject to a just-in-time control mechanism. Transcription ofspo0Ais governed by a promoter switching mechanism, involving a vegetative, σA-recognized promoter, Pv, and a sporulation σH-recognized promoter, Ps, that is under phosphorylated Spo0A (Spo0A∼P) control. Thespo0Aregulatory region also contains four (including one identified in the present work) conserved elements that conform to the consensus binding site for Spo0A∼P binding sites. These are herein designated O1, O2, O3, and O4in reverse order of their proximity to the coding sequence. Here we report that O1is responsible for repressing Pvduring the transition to stationary phase, that O2is responsible for repressing Psduring growth, that O3is responsible for activating Psat the start of sporulation, and that O4is dispensable for promoter switching. We also report that Spo0A synthesis is subject to a posttranscriptional control mechanism such that translation of mRNAs originating from Pvis impeded due to RNA secondary structure whereas mRNAs originating from Psare fully competent for protein synthesis. We propose that the opposing actions of O2and O3and the enhanced translatability of mRNAs originating from Pscreate a highly sensitive, self-reinforcing switch that is responsible for producing a burst of Spo0A synthesis at the start of sporulation.

2020 ◽  
Vol 202 (14) ◽  
Author(s):  
Timofey D. Arapov ◽  
Rafael Castañeda Saldaña ◽  
Amanda L. Sebastian ◽  
W. Keith Ray ◽  
Richard F. Helm ◽  
...  

ABSTRACT Chemotaxis systems enable microbes to sense their immediate environment, moving toward beneficial stimuli and away from those that are harmful. In an effort to better understand the chemotaxis system of Sinorhizobium meliloti, a symbiont of the legume alfalfa, the cellular stoichiometries of all ten chemotaxis proteins in S. meliloti were determined. A combination of quantitative immunoblot and mass spectrometry revealed that the protein stoichiometries in S. meliloti varied greatly from those in Escherichia coli and Bacillus subtilis. To compare protein ratios to other systems, values were normalized to the central kinase CheA. All S. meliloti chemotaxis proteins exhibited increased ratios to various degrees. The 10-fold higher molar ratio of adaptor proteins CheW1 and CheW2 to CheA might result in the formation of rings in the chemotaxis array that consist of only CheW instead of CheA and CheW in a 1:1 ratio. We hypothesize that the higher ratio of CheA to the main response regulator CheY2 is a consequence of the speed-variable motor in S. meliloti, instead of a switch-type motor. Similarly, proteins involved in signal termination are far more abundant in S. meliloti, which utilizes a phosphate sink mechanism based on CheA retrophosphorylation to inactivate the motor response regulator versus CheZ-catalyzed dephosphorylation as in E. coli and B. subtilis. Finally, the abundance of CheB and CheR, which regulate chemoreceptor methylation, was increased compared to CheA, indicative of variations in the adaptation system of S. meliloti. Collectively, these results mark significant differences in the composition of bacterial chemotaxis systems. IMPORTANCE The symbiotic soil bacterium Sinorhizobium meliloti contributes greatly to host-plant growth by fixing atmospheric nitrogen. The provision of nitrogen as ammonium by S. meliloti leads to increased biomass production of its legume host alfalfa and diminishes the use of environmentally harmful chemical fertilizers. To better understand the role of chemotaxis in host-microbe interaction, a comprehensive catalogue of the bacterial chemotaxis system is vital, including its composition, function, and regulation. The stoichiometry of chemotaxis proteins in S. meliloti has very few similarities to the systems in Escherichia coli and Bacillus subtilis. In addition, total amounts of proteins are significantly lower. S. meliloti exhibits a chemotaxis system distinct from known models by incorporating new proteins as exemplified by the phosphate sink mechanism.


2015 ◽  
Vol 83 (3) ◽  
pp. 1199-1209 ◽  
Author(s):  
Kivanc Bilecen ◽  
Jiunn C. N. Fong ◽  
Andrew Cheng ◽  
Christopher J. Jones ◽  
David Zamorano-Sánchez ◽  
...  

Two-component systems play important roles in the physiology of many bacterial pathogens.Vibrio cholerae's CarRS two-component regulatory system negatively regulates expression ofvps(Vibriopolysaccharide) genes and biofilm formation. In this study, we report that CarR confers polymyxin B resistance by positively regulating expression of thealmEFGgenes, whose products are required for glycine and diglycine modification of lipid A. We determined that CarR directly binds to the regulatory region of thealmEFGoperon. Similarly to acarRmutant, strains lackingalmE,almF, andalmGexhibited enhanced polymyxin B sensitivity. We also observed that strains lackingalmEor thealmEFGoperon have enhanced biofilm formation. Our results reveal that CarR regulates biofilm formation and antimicrobial peptide resistance inV. cholerae.


2015 ◽  
Vol 197 (8) ◽  
pp. 1492-1506 ◽  
Author(s):  
Letal I. Salzberg ◽  
Eric Botella ◽  
Karsten Hokamp ◽  
Haike Antelmann ◽  
Sandra Maaß ◽  
...  

ABSTRACTThe PhoPR two-component signal transduction system controls one of three responses activated byBacillus subtilisto adapt to phosphate-limiting conditions (PHO response). The response involves the production of enzymes and transporters that scavenge for phosphate in the environment and assimilate it into the cell. However, inB. subtilisand some otherFirmicutesbacteria, cell wall metabolism is also part of the PHO response due to the high phosphate content of the teichoic acids attached either to peptidoglycan (wall teichoic acid) or to the cytoplasmic membrane (lipoteichoic acid). Prompted by our observation that the phosphorylated WalR (WalR∼P) response regulator binds to more chromosomal loci than are revealed by transcriptome analysis, we established the PhoP∼P bindome in phosphate-limited cells. Here, we show that PhoP∼P binds to the chromosome at 25 loci: 12 are within the promoters of previously identified PhoPR regulon genes, while 13 are newly identified. We extend the role of PhoPR in cell wall metabolism showing that PhoP∼P binds to the promoters of four cell wall-associated operons (ggaAB,yqgS,wapA, anddacA), although none show PhoPR-dependent expression under the conditions of this study. We also show that positive autoregulation ofphoPRexpression and full induction of the PHO response upon phosphate limitation require PhoP∼P binding to the 3′ end of thephoPRoperon.IMPORTANCEThe PhoPR two-component system controls one of three responses mounted byB. subtilisto adapt to phosphate limitation (PHO response). Here, establishment of the phosphorylated PhoP (PhoP∼P) bindome enhances our understanding of the PHO response in two important ways. First, PhoPR plays a more extensive role in adaptation to phosphate-limiting conditions than was deduced from transcriptome analyses. Among 13 newly identified binding sites, 4 are cell wall associated (ggaAB,yqgS,wapA, anddacA), revealing that PhoPR has an extended involvement in cell wall metabolism. Second, amplification of the PHO response must occur by a novel mechanism since positive autoregulation ofphoPRexpression requires PhoP∼P binding to the 3′ end of the operon.


2014 ◽  
Vol 197 (3) ◽  
pp. 592-602 ◽  
Author(s):  
Shira Omer Bendori ◽  
Shaul Pollak ◽  
Dorit Hizi ◽  
Avigdor Eldar

The genome ofBacillus subtilis168 encodes eightrap-phrquorum-sensing pairs. Rap proteins of all characterized Rap-Phr pairs inhibit the function of one or several important response regulators: ComA, Spo0F, or DegU. This inhibition is relieved upon binding of the peptide encoded by the cognatephrgene.Bacillus subtilisstrain NCIB3610, the biofilm-proficient ancestor of strain 168, encodes, in addition, therapP-phrPpair on the plasmid pBS32. RapP was shown to dephosphorylate Spo0F and to regulate biofilm formation, but unlike other Rap-Phr pairs, RapP does not interact with PhrP. In this work we extend the analysis of the RapP pathway by reexamining its transcriptional regulation, its effect on downstream targets, and its interaction with PhrP. At the transcriptional level, we show thatrapPandphrPregulation is similar to that of otherrap-phrpairs. We further find that RapP has an Spo0F-independent negative effect on biofilm-related genes, which is mediated by the response regulator ComA. Finally, we find that the insensitivity of RapP to PhrP is due to a substitution of a highly conserved residue in the peptide binding domain of therapPallele of strain NCIB3610. Reversing this substitution to the consensus amino acid restores the PhrP dependence of RapP activity and eliminates the effects of therapP-phrPlocus on ComA activity and biofilm formation. Taken together, our results suggest that RapP strongly represses biofilm formation through multiple targets and that PhrP does not counteract RapP due to a rare mutation inrapP.


2019 ◽  
Vol 201 (8) ◽  
Author(s):  
Michael D. Manson

ABSTRACT The cytoplasmic C ring of the bacterial flagellum is known as the switch complex. It binds the response regulator phospho-CheY to control the direction of flagellar rotation. The C ring of enteric bacteria is well characterized. However, no Gram-positive switch complex had been modeled. Ward et al. (E. Ward, E. A. Kim, J. Panushka, T. Botelho, et al., J Bacteriol 201:e00626-18, 2019, https://doi.org/10.1128/JB.00626-18) propose a structure for the Bacillus subtilis switch complex based on extensive biochemical studies. The work demonstrates that a similar architecture can accommodate different proteins and a reversed signaling logic.


2004 ◽  
Vol 186 (6) ◽  
pp. 1694-1704 ◽  
Author(s):  
Avanti Baruah ◽  
Brett Lindsey ◽  
Yi Zhu ◽  
Michiko M. Nakano

ABSTRACT The Bacillus subtilis ResD-ResE two-component regulatory system activates genes involved in nitrate respiration in response to oxygen limitation or nitric oxide (NO). The sensor kinase ResE activates the response regulator ResD through phosphorylation, which then binds to the regulatory region of genes involved in anaerobiosis to activate their transcription. ResE is composed of an N-terminal signal input domain and a C-terminal catalytic domain. The N-terminal domain contains two transmembrane subdomains and a large extracytoplasmic loop. It also has a cytoplasmic PAS subdomain between the HAMP linker and C-terminal kinase domain. In an attempt to identify the signal-sensing subdomain of ResE, a series of deletions and amino acid substitutions were generated in the N-terminal domain. The results indicated that cytoplasmic ResE lacking the transmembrane segments and the extracytoplasmic loop retains the ability to sense oxygen limitation and NO, which leads to transcriptional activation of ResDE-dependent genes. This activity was eliminated by the deletion of the PAS subdomain, demonstrating that the PAS subdomain participates in signal reception. The study also raised the possibility that the extracytoplasmic region may serve as a second signal-sensing subdomain. This suggests that the extracytoplasmic region could contribute to amplification of ResE activity leading to the robust activation of genes required for anaerobic metabolism in B. subtilis.


2011 ◽  
Vol 193 (22) ◽  
pp. 6276-6287 ◽  
Author(s):  
Boris R. Belitsky ◽  
Abraham L. Sonenshein

CodY is a global transcriptional regulator known to control expression of more than 100 genes and operons inBacillus subtilis. Some of the most strongly repressed targets of CodY, thenupNOPQ(formerly,yufNOPQ) genes, were found to encode a guanosine transporter. Using DNase I footprinting experiments, we identified two high-affinity CodY-binding sites in the regulatory region of thenupNgene. The two sites are located 50 bp upstream and 163 bp downstream of the transcription start site. The downstream site was responsible for 6- to 8-foldnupNrepression in the absence of the upstream site. When the upstream site was intact, however, only a minor contribution of the downstream site tonupNregulation could be detected under the conditions tested. Both sites contained 15-bp CodY-binding motifs with two mismatches each with respect to the consensus sequence, AATTTTCWGTTTTAA. However, the experimentally determined binding sites included additional sequences flanking the 15-bp CodY-binding motifs. An additional version of the 15-bp CodY-binding motif, with 5 mismatches with respect to the consensus but essential for efficient regulation by CodY, was found within the upstream site. The presence of multiple 15-bp motifs may be a common feature of CodY-binding sites.


2012 ◽  
Vol 195 (2) ◽  
pp. 193-201 ◽  
Author(s):  
Hiroshi Ishii ◽  
Teruo Tanaka ◽  
Mitsuo Ogura

ABSTRACTInBacillus subtilis, the response regulator DegU and its cognate kinase, DegS, constitute a two-component system that regulates many cellular processes, including exoprotease production and genetic competence. Phosphorylated DegU (DegU-P) activates its own promoter and is degraded by the ClpCP protease. We observed induction ofdegUby glucose in sporulation medium. This was abolished in two mutants: theccpA(catabolite control protein A) andclpCdisruptants. Transcription of the promoter of the operon containingclpC(PclpC) decreased in the presence of glucose, and the disruption ofccpAresulted in derepression of PclpC. However, this was not directly mediated by CcpA, because we failed to detect binding of CcpA to PclpC. Glucose decreased the expression ofclpC, leading to low cellular concentrations of the ClpCP protease. Thus,degUis induced through activation of autoregulation by a decrease in ClpCP-dependent proteolysis of DegU-P. An electrophoretic mobility shift assay showed that CcpA bound directly to thedegUupstream region, indicating that CcpA activatesdegUthrough binding. The bound region was narrowed down to 27 bases, which contained acre(catabolite-responsiveelement) sequence with a low match to thecreconsensus sequence. In a footprint analysis, CcpA specifically protected a region containing thecresequence from DNase I digestion. The induction ofdegUby glucose showed complex regulation of thedegUgene.


2015 ◽  
Vol 198 (5) ◽  
pp. 830-845 ◽  
Author(s):  
Kazutake Hirooka ◽  
Yusuke Kodoi ◽  
Takenori Satomura ◽  
Yasutaro Fujita

ABSTRACTTheBacillus subtilisrhaEWRBMA(formerlyyuxG-yulBCDE) operon consists of four genes encoding enzymes forl-rhamnose catabolism and therhaRgene encoding a DeoR-type transcriptional regulator. DNase I footprinting analysis showed that the RhaR protein specifically binds to the regulatory region upstream of therhaEWgene, in which two imperfect direct repeats are included. Gel retardation analysis revealed that the direct repeat farther upstream is essential for the high-affinity binding of RhaR and that the DNA binding of RhaR was effectively inhibited byl-rhamnulose-1-phosphate, an intermediate ofl-rhamnose catabolism. Moreover, it was demonstrated that the CcpA/P-Ser-HPr complex, primarily governing the carbon catabolite control inB. subtilis, binds to the catabolite-responsive element, which overlaps the RhaR binding site.In vivoanalysis of therhaEWpromoter-lacZfusion in the background ofccpAdeletion showed that thel-rhamnose-responsive induction of therhaEWpromoter was negated by the disruption ofrhaAorrhaBbut notrhaEWorrhaM, whereasrhaRdisruption resulted in constitutiverhaEWpromoter activity. Thesein vitroandin vivoresults clearly indicate that RhaR represses the operon by binding to the operator site, which is detached byl-rhamnulose-1-phosphate formed froml-rhamnose through a sequence of isomerization by RhaA and phosphorylation by RhaB, leading to the derepression of the operon. In addition, thelacZreporter analysis using the strains with or without theccpAdeletion under the background ofrhaRdisruption supported the involvement of CcpA in the carbon catabolite repression of the operon.IMPORTANCESincel-rhamnose is a component of various plant-derived compounds, it is a potential carbon source for plant-associating bacteria. Moreover, it is suggested thatl-rhamnose catabolism plays a significant role in some bacteria-plant interactions, e.g., invasion of plant pathogens and nodulation of rhizobia. Despite the physiological importance ofl-rhamnose catabolism for various bacterial species, the transcriptional regulation of the relevant genes has been poorly understood, except for the regulatory system ofEscherichia coli. In this study, we show that, inBacillus subtilis, one of the plant growth-promoting rhizobacteria, therhaEWRBMAoperon forl-rhamnose catabolism is controlled by RhaR and CcpA. This regulatory system can be another standard model for better understanding the regulatory mechanisms ofl-rhamnose catabolism in other bacterial species.


2019 ◽  
Vol 25 (1) ◽  
pp. 25-40 ◽  
Author(s):  
Sandeep Phogat ◽  
Anil Kumar Gupta

Purpose The maintenance department of today, like many other departments, is under sustained pressure to slash costs, show outcome and support the assignment of the organization, as it is a commonsensical prospect from the business perspective. The purpose of this paper is to examine expected maintenance waste reduction benefits in the maintenance of organizations after the implementation of just-in-time (JIT) managerial philosophy. For this, a structured questionnaire was designed and sent to the 421 industries in India. Design/methodology/approach The designed questionnaire was divided into two sections A and B to assist data interpretation. The aim of the section A was to build general information of participants, type of organization, number of employees, annual turnover of the organization, etc. Section B was also a structured questionnaire developed based on a five-point Likert scale. The identified critical elements of the JIT were included in the questionnaire to identify the maintenance waste reduction benefits in the maintenance of organizations. Findings On the basis of the 133 responses, hypothesis testing was done with the help of Z-test, and it was found out that in maintenance, we can reduce a large inventory of spare parts and also shorten the excessive maintenance activities due to the implementation of JIT philosophy. All the four wastes: waste of processing; waste of rejects/rework/scrap in case of poor maintenance; waste of the transport of spares, and waste of motion, have approximately equal weightage in their reduction. Waste of waiting for spares got the last rank, which showed that there are little bit chances in the reduction of waiting for spares after the implementation of JIT philosophy in maintenance. Practical implications The implication of the research findings for maintenance of organizations is that if maintenance practitioners implement elements of JIT philosophy in maintenance then there will be a great reduction in the maintenance wastes. Originality/value This paper will be abundantly useful for the maintenance professionals, researchers and others concerned with maintenance to understand the significance of JIT philosophy implementation to get the expected reduction benefits in maintenance wastes of organizations which will be helpful in the great saving of maintenance cost and time side by side great increment in the availability of machines.


Sign in / Sign up

Export Citation Format

Share Document