scholarly journals The HPr(Ser) Kinase of Streptococcus salivarius: Purification, Properties, and Cloning of thehprK Gene

1999 ◽  
Vol 181 (3) ◽  
pp. 709-717 ◽  
Author(s):  
Denis Brochu ◽  
Christian Vadeboncoeur

ABSTRACT In gram-positive bacteria, HPr, a protein of the phosphoenolpyruvate:sugar phosphotransferase system, is phosphorylated on a serine residue at position 46 by an ATP-dependent protein kinase. The HPr(Ser) kinase of Streptococcus salivarius ATCC 25975 was purified, and the encoding gene (hprK) was cloned by using a nucleotide probe designed from the N-terminal amino acid sequence. The predicted amino acid sequence of the S. salivarius enzyme showed 45% identity with the Bacillus subtilis enzyme, the conserved residues being located mainly in the C-terminal half of the protein. The predicted hprK gene product has a molecular mass of 34,440 Da and a pI of 5.6. These values agree well with those found experimentally by polyacrylamide gel electrophoresis in the presence of sodium dodecyl sulfate, molecular sieve chromatography in the presence of guanidine hydrochloride, and chromatofocusing using the purified protein. The native protein migrates on a Superdex 200 HR column as a 330,000-Da protein, suggesting that the HPr(Ser) kinase is a decamer. The enzyme requires Mg2+ for activity and functions optimally at pH 7.5. Unlike the enzyme from other gram-positive bacteria, the HPr(Ser) kinase fromS. salivarius is not stimulated by FDP or other glycolytic intermediates. The enzyme is inhibited by inorganic phosphate, and itsKm s for HPr and ATP are 31 μM and 1 mM, respectively.

2001 ◽  
Vol 183 (9) ◽  
pp. 2724-2732 ◽  
Author(s):  
Céline Lévesque ◽  
Christian Vadeboncoeur ◽  
Fatiha Chandad ◽  
Michel Frenette

ABSTRACT Streptococcus salivarius, a gram-positive bacterium found in the human oral cavity, expresses flexible peritrichous fimbriae. In this paper, we report purification and partial characterization of S. salivarius fimbriae. Fimbriae were extracted by shearing the cell surface of hyperfimbriated mutant A37 (a spontaneous mutant of S. salivarius ATCC 25975) with glass beads. Preliminary experiments showed that S. salivariusfimbriae did not dissociate when they were incubated at 100°C in the presence of sodium dodecyl sulfate. This characteristic was used to separate them from other cell surface components by successive gel filtration chromatography procedures. Fimbriae with molecular masses ranging from 20 × 106 to 40 × 106Da were purified. Examination of purified fimbriae by electron microscopy revealed the presence of filamentous structures up to 1 μm long and 3 to 4 nm in diameter. Biochemical studies of purified fimbriae and an amino acid sequence analysis of a fimbrial internal peptide revealed that S. salivarius fimbriae were composed of a glycoprotein assembled into a filamentous structure resistant to dissociation. The internal amino acid sequence was composed of a repeated motif of two amino acids alternating with two modified residues: A/X/T-E-Q-M/φ, where X represents a modified amino acid residue and φ represents a blank cycle. Immunolocalization experiments also revealed that the fimbriae were associated with a wheat germ agglutinin-reactive carbohydrate. Immunolabeling experiments with antifimbria polyclonal antibodies showed that antigenically related fimbria-like structures were expressed in two other human oral streptococcal species, Streptococcus mitis andStreptococcus constellatus.


2015 ◽  
Vol 27 (1) ◽  
pp. 100
Author(s):  
G. Takahashi ◽  
M. Maeda ◽  
Y. Kimura ◽  
H. Funahashi

Seminal gel (SG), a part of semen, of the boar originates from secretions from the Cowper's gland and has a high viscosity and water-holding capacity, preventing backflow of semen at natural mating. However, there are is little information available about biochemical and functional characteristics of boar SG. In this study, as a first step to elucidate the chemical features of the SG, we examined the structure of O-glycans and the primary structure of protein from the boar SG. Seminal gel was collected from ejaculated semen of a Berkshire boar with high fertility and freeze-dried. Samples were preserved in a refrigerator until experiments were conducted. For Exp. 1 the presence of O-glycans in SG was confirmed by detection of the amino sugar, galactosamine (GalNH2), from acid hydrolysis of GalNAc. The freeze-dried SG (1 mg) was hydrolyzed with 4N trifluoroacetic acid at 110°C for 2 h. The resulting amino sugar was labelled with phenyl isothiocyanate (PITC) and then analysed by RP-HPLC. The GalNAc was detected as a main amino sugar, suggesting that the SG contains O-glycosylated glycoprotein. For Exp. 2 the O-glycans were prepared from the freeze-dried SG (5 mg) by hydrazinolysis at 100°C for 2 h. After N-acetylation, the O-glycans were pyridylaminated. The structures were identified by anion-exchange HPLC, size-fractionation HPLC, glycosidase digestion, and ESI-MS and MS/MS analysis. Almost all glycans were digested by α2–3,6-sialidasae, indicating that these O-glycans are sialylated and give the glycoproteins viscosity. Furthermore, the MS analysis showed that the de-sialylated O-glycans consist of HexNAc-PA (m/z 300.0) and Hex-HexNAc-PA (m/z 462.0) and major glycans are di- or tri-saccharides. For Exp. 3 proteins in the SG were separated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis under reducing condition with 5% 2-mercaptoethanol. Proteins were stained with Coomassie Brilliant Blue R-250. Three bands (~160, 140, and 70 kDa) were found on 7.5% polyacrylamide gel, but two bands (160, 140 kDa) were converted to ~130 kDa after the sialidase digestion, indicating that native two proteins (160 and 140 kDa) may be highly sialylated. For Exp. 4 internal amino acid sequence was analysed using one of the peptic peptides. The freeze-dried SG (5 mg) was digested with porcine pepsin in 5% formic acid at 37°C for 3 h. The resulting peptides were separated by RP-HPLC. N-terminal sequence of one of the peptic peptides was WSEKYGIPGGKAH. The amino acid sequence showed a high homology with tyrosine-protein kinase ZAP-70. These results suggest that boar SG contains mucin-like glycoproteins carrying heavily sialylated O-glycans. Additionally, the current study suggests a possibility that some protein components of the boar SG derive from high concentration of the kinase in (dead) sperms.


2003 ◽  
Vol 69 (10) ◽  
pp. 5746-5753 ◽  
Author(s):  
Yukio Yamamoto ◽  
Yoshikazu Togawa ◽  
Makoto Shimosaka ◽  
Mitsuo Okazaki

ABSTRACT Lactic acid bacteria exhibiting activity against the gram-positive bacterium Bacillus subtilis were isolated from rice bran. One of the isolates, identified as Enterococcus faecalis RJ-11, exhibited a wide spectrum of growth inhibition with various gram-positive bacteria. A bacteriocin purified from culture fluid, designated enterocin RJ-11, was heat stable and was not sensitive to acid and alkaline conditions, but it was sensitive to several proteolytic enzymes. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis analysis revealed that enterocin RJ-11 had a molecular weight of 5,000 in its monomeric form. The amino acid sequence determined for purified enterocin RJ-11 exhibited high levels of similarity to the sequences of enterocins produced by Enterococcus faecium.


1997 ◽  
Vol 272 (6) ◽  
pp. 1-1
Author(s):  
C. M. Fuller ◽  
M. S. Awayda ◽  
M. P. Arrate ◽  
A. L. Bradford ◽  
R. G. Morris ◽  
...  

Pages C641-C654: C. M. Fuller, M. S. Awayda, M. P. Arrate, A. L. Bradford, R. G. Morris, C. M. Canessa, B. C. Rossier, and D. J. Benos. “Cloning of a bovine renal epithelial Na+ channel subunit.” Page C642: Fig. 1 contains two errors in the published sequence of the cDNA agr-bENaC clone presented. A severe COOH compression at nucleotide positions 1750 and 1760 resulted in a double frameshift in the COOH-terminal portion of the sequence. Correction of the nucleotide sequence causes the termination codon to fall at position 1951 (as opposed to position 2092 as previously published), predicting a translated polypeptide of 650 amino acids as opposed to 697 residues as previously reported. This shortened protein has a calculated molecuar mass of 73.4 kDa, although it is observed to migrate with a relative molecular weight of ap80,000 on 8% sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The overall homology of the nucleotide sequence with the rat and human agr-ENaC clones is slightly increased by this sequence change to 80 and 84% identities, respectively. In the COOH-terminal region, the homology increases to 53% identity from 43% identity for the rat clone and to 64% identity from 51% identity for the human sequence. A revised nucleotide and amino acid sequence is given in the revised Fig. 1. The sites of the COOH insertion are underlined and the altered amino acid sequence is given in bold. However, this sequence revision does not affect the conclusions of this or subsequent papers from our laboratory concerning this cDNA clone. The amended sequence has been deposited with GenBank (accession no. U14944). The authors apologize for any inconvenience caused by this error. (See PDF)


2002 ◽  
Vol 184 (21) ◽  
pp. 5955-5965 ◽  
Author(s):  
Thomas Hansen ◽  
Bianca Reichstein ◽  
Roland Schmid ◽  
Peter Schönheit

ABSTRACT An ATP-dependent glucokinase of the hyperthermophilic aerobic crenarchaeon Aeropyrum pernix was purified 230-fold to homogeneity. The enzyme is a monomeric protein with an apparent molecular mass of about 36 kDa. The apparent Km values for ATP and glucose (at 90°C and pH 6.2) were 0.42 and 0.044 mM, respectively; the apparent V max was about 35 U/mg. The enzyme was specific for ATP as a phosphoryl donor, but showed a broad spectrum for phosphoryl acceptors: in addition to glucose, which showed the highest catalytic efficiency (k cat/Km ), the enzyme also phosphorylates glucosamin, fructose, mannose, and 2-deoxyglucose. Divalent cations were required for maximal activity: Mg2+, which was most effective, could partially be replaced with Co2+, Mn2+, and Ni2+. The enzyme had a temperature optimum of at least 100°C and showed significant thermostability up to 100°C. The coding function of open reading frame (ORF) APE2091 (Y. Kawarabayasi, Y. Hino, H. Horikawa, S. Yamazaki, Y. Haikawa, K. Jin-no, M. Takahashi, M. Sekine, S. Baba, A. Ankai, H. Kosugi, A. Hosoyama, S. Fukui, Y. Nagai, K. Nishijima, H. Nakazawa, M. Takamiya, S. Masuda, T. Funahashi, T. Tanaka, Y. Kudoh, J. Yamazaki, N. Kushida, A. Oguchi, and H. Kikuchi, DNA Res. 6:83-101, 145-152, 1999), previously annotated as gene glk, coding for ATP-glucokinase of A. pernix, was proved by functional expression in Escherichia coli. The purified recombinant ATP-dependent glucokinase showed a 5-kDa higher molecular mass on sodium dodecyl sulfate-polyacrylamide gel electrophoresis, but almost identical kinetic and thermostability properties in comparison to the native enzyme purified from A. pernix. N-terminal amino acid sequence of the native enzyme revealed that the translation start codon is a GTG 171 bp downstream of the annotated start codon of ORF APE2091. The amino acid sequence deduced from the truncated ORF APE2091 revealed sequence similarity to members of the ROK family, which comprise bacterial sugar kinases and transcriptional repressors. This is the first report of the characterization of an ATP-dependent glucokinase from the domain of Archaea, which differs from its bacterial counterparts by its monomeric structure and its broad specificity for hexoses.


2004 ◽  
Vol 70 (10) ◽  
pp. 6131-6137 ◽  
Author(s):  
Lilian Schoefer ◽  
Annett Braune ◽  
Michael Blaut

ABSTRACT Phloretin hydrolase catalyzes the hydrolytic C-C cleavage of phloretin to phloroglucinol and 3-(4-hydroxyphenyl)propionic acid during flavonoid degradation in Eubacterium ramulus. The gene encoding the enzyme was cloned by screening a gene library for hydrolase activity. The insert of a clone conferring phloretin hydrolase activity was sequenced. Sequence analysis revealed an open reading frame of 822 bp (phy), a putative promoter region, and a terminating stem-loop structure. The deduced amino acid sequence of phy showed similarities to a putative protein of the 2,4-diacetylphloroglucinol biosynthetic operon from Pseudomonas fluorescens. The phloretin hydrolase was heterologously expressed in Escherichia coli and purified. The molecular mass of the native enzyme was approximately 55 kDa as determined by gel filtration. The results of sodium dodecyl sulfate-polyacrylamide gel electrophoresis and the deduced amino acid sequence of phy indicated molecular masses of 30 and 30.8 kDa, respectively, suggesting that the enzyme is a homodimer. The recombinant phloretin hydrolase catalyzed the hydrolysis of phloretin to equimolar amounts of phloroglucinol and 3-(4-hydroxyphenyl)propionic acid. The optimal temperature and pH of the catalyzed reaction mixture were 37°C and 7.0, respectively. The Km for phloretin was 13 ± 3 μM and the k cat was 10 ± 2 s−1. The enzyme did not transform phloretin-2′-glucoside (phloridzin), neohesperidin dihydrochalcone, 1,3-diphenyl-1,3-propandione, or trans-1,3-diphenyl-2,3-epoxy-propan-1-one. The catalytic activity of the phloretin hydrolase was reduced by N-bromosuccinimide, o-phenanthroline, N-ethylmaleimide, and CuCl2 to 3, 20, 35, and 85%, respectively. Phloroglucinol and 3-(4-hydroxyphenyl)propionic acid reduced the activity to 54 and 70%, respectively.


2002 ◽  
Vol 68 (7) ◽  
pp. 3532-3536 ◽  
Author(s):  
María J. Benito ◽  
Mar Rodríguez ◽  
Félix Núñez ◽  
Miguel A. Asensio ◽  
María E. Bermúdez ◽  
...  

ABSTRACT An extracellular protease from Penicillium chrysogenum (Pg222) isolated from dry-cured ham has been purified. The purification procedure involved several steps: ammonium sulfate precipitation, ion-exchange chromatography, filtration, and separation by high-performance liquid chromatography. Based on sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) analysis and gel filtration, the purified fraction showed a molecular mass of about 35 kDa. The hydrolytic properties of the purified enzyme (EPg222) on extracted pork myofibrillar proteins under several conditions were evaluated by SDS-PAGE. EPg222 showed activity in the range of 10 to 60°C in temperature, 0 to 3 M NaCl, and pH 5 to 7, with maximum activity at pH 6, 45°C, and 0.25 M NaCl. Under these conditions the enzyme was most active against tropomyosin, actin, and myosin. EPg222 showed collagenolytic activity but did not hydrolyze myoglobin. EPg222 showed higher activity than other proteolytic enzymes like papain, trypsin, and Aspergillus oryzae protease. The N-terminal amino acid sequence was determined and was found to be Glu-Asn-Pro-Leu-Gln-Pro-Asn-Ala-Pro-Ser-Trp. This partial amino acid sequence revealed a 55% homology with serine proteases from Penicillium citrinum. The activity of this novel protease may be of interest in ripening and generating the flavor of dry-cured meat products.


2005 ◽  
Vol 68 (1) ◽  
pp. 157-163 ◽  
Author(s):  
MI-HEE KIM ◽  
YOON-JUNG KONG ◽  
HONG BAEK ◽  
HYUNG-HWAN HYUN

Strain GO5, a bacteriocin-producing bacterium, was isolated from green onion kimchi and identified as Micrococcus sp. The bacteriocin, micrococcin GO5, displayed a broad spectrum of inhibitory activity against a variety of pathogenic and nonpathogenic microorganisms, as tested by the spot-on-lawn method; its activity spectrum was almost identical to that of nisin. Micrococcin GO5 was inactivated by trypsin (whereas nisin was not) and was completely stable at 100°C for 30 min and in the pH range of 2.0 to 7.0. Micrococcin GO5 exhibited a typical mode of bactericidal activity against Micrococcus flavus ATCC 10240. It was purified to homogeneity through ammonium sulfate precipitation, ultrafiltration, and CM-Sepharose column chromatography. The molecular mass of micrococcin GO5 was estimated to be about 5.0 kDa by tricine–sodium dodecyl sulfate–polyacrylamide gel electrophoresis and in situ activity assay with the indicator organism. The amino acid sequence of micrococcin GO5 lacks lanthionine and β-methyllanthionine and is rich in hydrophobic amino acids and glycine, providing the basis for the high heat stability of this bacteriocin. The N-terminal amino acid sequence of micrococcin GO5 is Lys-Lys-Ser-Phe-Cys-Gln-Lys, and no homology to bacteriocins reported previously was observed in the amino acid composition or N-terminal amino acid sequence. Based on the physicochemical properties, small molecular size, and inhibition of Listeria monocytogenes, micrococcin GO5 has been placed with the class II bacteriocins, but its broad spectrum of activity differs from that of other bacteriocins in this class.


1989 ◽  
Vol 35 (8) ◽  
pp. 749-753 ◽  
Author(s):  
Denis Leclerc ◽  
Alain Asselin

Cell walls from various Gram-positive bacteria were incorporated at a concentration of 0.2% (w/v) into polyacrylamide gels as a substrate for detection of cell wall hydrolases. Bacterial extracts from crude cell wall preparations were denatured with sodium dodecyl sulfate and 2-mercaptoethanol and subjected to denaturing polyacrylamide gel electrophoresis in gels containing bacterial cell walls. After renaturation in the presence of purified and buffered 1% (v/v) Triton X-100, cell wall hydrolases were visualized as clear lytic zones against the opaque cell wall background. One to fifteen bands with lytic activity could be detected, depending on bacterial extracts and on the nature of the cell walls incorporated into gels. Crude cell wall extracts were the best source of cell wall hydrolases from various Gram-positive bacteria such as Clostridium perfringens (15 bands), Micrococcus luteus (1 band), Bacillus megaterium (4 bands), Bacillus sp. (6 bands), B. cereus (3 bands), B. subtilis (7 bands), Staphylococcus aureus (13 bands), Streptococcus faecalis (3 bands), and Strep. pyogenes (5 bands). Molecular masses of cell wall hydrolases ranged from 17 to 114.6 kDa. Lytic activities against cell walls of Corynebacterium sepedonicum (Clavibacter michiganense pv. sepedonicum) could be shown with the cell wall extracts of Strep. pyogenes (45.7 kDa), Strep. faecalis (67 kDa), B. megaterium (67 kDa), and Staph. aureus (67 kDa).Key words: autolysins, electrophoresis, hydrolases, muramidases, peptidoglycan.


2007 ◽  
Vol 189 (15) ◽  
pp. 5626-5633 ◽  
Author(s):  
Ryushi Kawakami ◽  
Haruhiko Sakuraba ◽  
Toshihisa Ohshima

ABSTRACT NAD-dependent l-glutamate dehydrogenase (NAD-GDH) activity was detected in cell extract from the psychrophile Janthinobacterium lividum UTB1302, which was isolated from cold soil and purified to homogeneity. The native enzyme (1,065 kDa, determined by gel filtration) is a homohexamer composed of 170-kDa subunits (determined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis). Consistent with these findings, gene cloning and sequencing enabled deduction of the amino acid sequence of the subunit, which proved to be comprised of 1,575 amino acids with a combined molecular mass of 169,360 Da. The enzyme from this psychrophile thus appears to belong to the GDH family characterized by very large subunits, like those expressed by Streptomyces clavuligerus and Pseudomonas aeruginosa (about 180 kDa). The entire amino acid sequence of the J. lividum enzyme showed about 40% identity with the sequences from S. clavuligerus and P. aeruginosa enzymes, but the central domains showed higher homology (about 65%). Within the central domain, the residues related to substrate and NAD binding were highly conserved, suggesting that this is the enzyme's catalytic domain. In the presence of NAD, but not in the presence of NADP, this GDH exclusively catalyzed the oxidative deamination of l-glutamate. The stereospecificity of the hydride transfer to NAD was pro-S, which is the same as that of the other known GDHs. Surprisingly, NAD-GDH activity was markedly enhanced by the addition of various amino acids, such as l-aspartate (1,735%) and l-arginine (936%), which strongly suggests that the N- and/or C-terminal domains play regulatory roles and are involved in the activation of the enzyme by these amino acids.


Sign in / Sign up

Export Citation Format

Share Document