scholarly journals Structural Analysis of the Domain Interface in DrrB, a Response Regulator of the OmpR/PhoB Subfamily

2003 ◽  
Vol 185 (14) ◽  
pp. 4186-4194 ◽  
Author(s):  
Victoria L. Robinson ◽  
Ti Wu ◽  
Ann M. Stock

ABSTRACT The N-terminal regulatory domains of bacterial response regulator proteins catalyze phosphoryl transfer and function as phosphorylation-dependent regulatory switches to control the output activities of C-terminal effector domains. Structures of numerous isolated regulatory and effector domains have been determined. However, a detailed understanding of regulatory interactions among these domains has been limited by the relative paucity of structural data for intact multidomain response regulator proteins. The first multidomain structures determined, those of transcription factor NarL and methylesterase CheB, both revealed extensive interdomain interfaces. The regulatory domains obstruct access to the functional sites of the effector domains, indicating a regulatory mechanism based on inhibition. In contrast, the recently determined structure of the OmpR/PhoB homologue DrrD revealed no significant interdomain interface, suggesting that the domains are tethered by a flexible linker and lack a fixed orientation relative to each other. To address the generality of this feature, we have determined the 1.8-Å resolution crystal structure of Thermotoga maritima DrrB, providing a second structure of a multidomain response regulator of the OmpR/PhoB subfamily. The structure reveals an extensive domain interface of 751 Å2 and therefore differs greatly from that observed in DrrD. Residues that are crucial players in defining the activation state of the regulatory domain contribute to this interface, implying that conformational changes associated with phosphorylation will influence these intramolecular contacts. The DrrB and DrrD structures are suggestive of different signaling mechanisms, with intramolecular communication between N- and C-terminal domains making substantially different contributions to effector domain regulation in individual members of the OmpR/PhoB family.

2000 ◽  
Vol 182 (23) ◽  
pp. 6673-6678 ◽  
Author(s):  
Fabiola Janiak-Spens ◽  
David P. Sparling ◽  
Ann H. West

ABSTRACT Two-component regulatory systems that utilize a multistep phosphorelay mechanism often involve a histidine-containing phosphotransfer (HPt) domain. These HPt domains serve an essential role as histidine-phosphorylated protein intermediates during phosphoryl transfer from one response regulator domain to another. InSaccharomyces cerevisiae, the YPD1 protein facilitates phosphoryl transfer from a hybrid sensor kinase, SLN1, to two distinct response regulator proteins, SSK1 and SKN7. Because the phosphorylation state largely determines the functional state of response regulator proteins, we have carried out a comparative study of the phosphorylated lifetimes of the three response regulator domains associated with SLN1, SSK1, and SKN7 (R1, R2, and R3, respectively). The isolated regulatory domains exhibited phosphorylated lifetimes within the range previously observed for other response regulator domains (i.e., several minutes to several hours). However, in the presence of YPD1, we found that the half-life of phosphorylated SSK1-R2 was dramatically extended (almost 200-fold longer than in the absence of YPD1). This stabilization effect was specific for SSK1-R2 and was not observed for SLN1-R1 or SKN7-R3. Our findings suggest a mechanism by which SSK1 is maintained in its phosphorylated state under normal physiological conditions and demonstrate an unprecedented regulatory role for an HPt domain in a phosphorelay signaling system.


2021 ◽  
Vol 22 (13) ◽  
pp. 6709
Author(s):  
Xiao-Xuan Shi ◽  
Peng-Ye Wang ◽  
Hong Chen ◽  
Ping Xie

The transition between strong and weak interactions of the kinesin head with the microtubule, which is regulated by the change of the nucleotide state of the head, is indispensable for the processive motion of the kinesin molecular motor on the microtubule. Here, using all-atom molecular dynamics simulations, the interactions between the kinesin head and tubulin are studied on the basis of the available high-resolution structural data. We found that the strong interaction can induce rapid large conformational changes of the tubulin, whereas the weak interaction cannot. Furthermore, we found that the large conformational changes of the tubulin have a significant effect on the interaction of the tubulin with the head in the weak-microtubule-binding ADP state. The calculated binding energy of the ADP-bound head to the tubulin with the large conformational changes is only about half that of the tubulin without the conformational changes.


2019 ◽  
Vol 5 (2) ◽  
pp. eaav4322 ◽  
Author(s):  
Sahil Gulati ◽  
Krzysztof Palczewski ◽  
Andreas Engel ◽  
Henning Stahlberg ◽  
Lubomir Kovacik

Cyclic nucleotide phosphodiesterases (PDEs) work in conjunction with adenylate/guanylate cyclases to regulate the key second messengers of G protein–coupled receptor signaling. Previous attempts to determine the full-length structure of PDE family members at high-resolution have been hindered by structural flexibility, especially in their linker regions and N- and C-terminal ends. Therefore, most structure-activity relationship studies have so far focused on truncated and conserved catalytic domains rather than the regulatory domains that allosterically govern the activity of most PDEs. Here, we used single-particle cryo–electron microscopy to determine the structure of the full-length PDE6αβ2γ complex. The final density map resolved at 3.4 Å reveals several previously unseen structural features, including a coiled N-terminal domain and the interface of PDE6γ subunits with the PDE6αβ heterodimer. Comparison of the PDE6αβ2γ complex with the closed state of PDE2A sheds light on the conformational changes associated with the allosteric activation of type I PDEs.


2019 ◽  
Vol 116 (11) ◽  
pp. 4963-4972 ◽  
Author(s):  
Igor Dikiy ◽  
Uthama R. Edupuganti ◽  
Rinat R. Abzalimov ◽  
Peter P. Borbat ◽  
Madhur Srivastava ◽  
...  

Translation of environmental cues into cellular behavior is a necessary process in all forms of life. In bacteria, this process frequently involves two-component systems in which a sensor histidine kinase (HK) autophosphorylates in response to a stimulus before subsequently transferring the phosphoryl group to a response regulator that controls downstream effectors. Many details of the molecular mechanisms of HK activation are still unclear due to complications associated with the multiple signaling states of these large, multidomain proteins. To address these challenges, we combined complementary solution biophysical approaches to examine the conformational changes upon activation of a minimal, blue-light–sensing histidine kinase from Erythrobacter litoralis HTCC2594, EL346. Our data show that multiple conformations coexist in the dark state of EL346 in solution, which may explain the enzyme’s residual dark-state activity. We also observe that activation involves destabilization of the helices in the dimerization and histidine phosphotransfer-like domain, where the phosphoacceptor histidine resides, and their interactions with the catalytic domain. Similar light-induced changes occur to some extent even in constitutively active or inactive mutants, showing that light sensing can be decoupled from activation of kinase activity. These structural changes mirror those inferred by comparing X-ray crystal structures of inactive and active HK fragments, suggesting that they are at the core of conformational changes leading to HK activation. More broadly, our findings uncover surprising complexity in this simple system and allow us to outline a mechanism of the multiple steps of HK activation.


2004 ◽  
Vol 186 (9) ◽  
pp. 2872-2879 ◽  
Author(s):  
Colin J. Bent ◽  
Neil W. Isaacs ◽  
Timothy J. Mitchell ◽  
Alan Riboldi-Tunnicliffe

ABSTRACT A variety of bacterial cellular responses to environmental signals are mediated by two-component signal transduction systems comprising a membrane-associated histidine protein kinase and a cytoplasmic response regulator (RR), which interpret specific stimuli and produce a measured physiological response. In RR activation, transient phosphorylation of a highly conserved aspartic acid residue drives the conformation changes needed for full activation of the protein. Sequence homology reveals that RR02 from Streptococcus pneumoniae belongs to the OmpR subfamily of RRs. The structures of the receiver domains from four members of this family, DrrB and DrrD from Thermotoga maritima, PhoB from Escherichia coli, and PhoP from Bacillus subtilis, have been elucidated. These domains are globally very similar in that they are composed of a doubly wound α5β5; however, they differ remarkably in the fine detail of the β4-α4 and α4 regions. The structures presented here reveal a further difference of the geometry in this region. RR02 is has been shown to be the essential RR in the gram-positive bacterium S. pneumoniae R. Lange, C. Wagner, A. de Saizieu, N. Flint, J. Molnos, M. Stieger, P. Caspers, M. Kamber, W. Keck, and K. E. Amrein, Gene 237:223-234, 1999; J. P. Throup, K. K. Koretke, A. P. Bryant, K. A. Ingraham, A. F. Chalker, Y. Ge, A. Marra, N. G. Wallis, J. R. Brown, D. J. Holmes, M. Rosenberg, and M. K. Burnham, Mol. Microbiol. 35:566-576, 2000). RR02 functions as part of a phosphotransfer system that ultimately controls the levels of competence within the bacteria. Here we report the native structure of the receiver domain of RR02 from serotype 4 S. pneumoniae (as well as acetate- and phosphate-bound forms) at different pH levels. Two native structures at 2.3 Å, phased by single-wavelength anomalous diffraction (xenon SAD), and 1.85 Å and a third structure at pH 5.9 revealed the presence of a phosphate ion outside the active site. The fourth structure revealed the presence of an acetate molecule in the active site.


2008 ◽  
Vol 145 (2) ◽  
pp. 199-206 ◽  
Author(s):  
Tae Gyun Kim ◽  
Hyung Jin Cha ◽  
Hyung Ju Lee ◽  
Seong-Dal Heo ◽  
Kwan Yong Choi ◽  
...  

Microbiology ◽  
2004 ◽  
Vol 150 (4) ◽  
pp. 877-883 ◽  
Author(s):  
Ingo G. Janausch ◽  
Inma Garcia-Moreno ◽  
Daniela Lehnen ◽  
Yvonne Zeuner ◽  
Gottfried Unden

The function of the response regulator DcuR of the DcuSR fumarate two-component sensory system of Escherichia coli was analysed in vitro. Isolated DcuR protein was phosphorylated by the sensory histidine kinase, DcuS, and ATP, or by acetyl phosphate. In gel retardation assays with target promoters (frdA, dcuB, dctA), phosphoryl DcuR (DcuR-P) formed a high-affinity complex, with an apparent K D (app. K D) of 0·2–0·3 μM DcuR-P, and a low-affinity (app. K D 0·8–2 μM) complex. The high-affinity complex was formed only with promoters transcriptionally-regulated by DcuSR, whereas low-affinity binding was seen also with some DcuSR-independent promoters. The binding site of DcuR-P at the dcuB promoter was determined by DNase I footprinting. One binding site of 42–52 nt (position −359 to −400/−410 nt upstream of the transcriptional start) was identified in the presence of low and high concentrations of DcuR-P. Non-phosphorylated DcuR, or DcuR-D56N mutated in the phosphoryl-accepting Asp56 residue, showed low-affinity binding to target promoters. DcuR-D56N was still able to interact with DcuS. DcuR-D56N increased the phosphorylation of DcuS and competitively inhibited phosphoryl transfer to wild-type DcuR.


Microbiology ◽  
2006 ◽  
Vol 152 (2) ◽  
pp. 431-441 ◽  
Author(s):  
Caroline Tapparel ◽  
Antoinette Monod ◽  
William L. Kelley

Two-component systems (TCS) based on a sensor histidine kinase and a phosphorylated cognate target regulator allow rapid responses to environmental changes. TCS are highly evolutionarily conserved, though in only a few cases are the inducing signals understood. This study focuses on the Escherichia coli CpxR response regulator that responds to periplasmic and outer-membrane stress. N-terminal deletion mutations have been isolated that render the transcription factor constitutively active, indicating that the N terminus functions, in part, to keep the C-terminal winged-helix DNA-binding effector domain in an inactive state. Analysis of truncations spanning the CpxR interdomain region revealed that mutants retaining the α5 helix significantly augment activation. Hybrid proteins obtained by fusing the CpxR effector domain to structurally similar heterologous N-terminal regulatory domains, or even GFP, failed to restore repression to the C-terminal domain. These findings shed light on the mechanism of CpxR effector domain activation and on the investigation of constitutive mutants obtained by truncation in other TCS.


2007 ◽  
Vol 190 (4) ◽  
pp. 1419-1428 ◽  
Author(s):  
Jayita Guhaniyogi ◽  
Ti Wu ◽  
Smita S. Patel ◽  
Ann M. Stock

ABSTRACT Chemotaxis, a means for motile bacteria to sense the environment and achieve directed swimming, is controlled by flagellar rotation. The primary output of the chemotaxis machinery is the phosphorylated form of the response regulator CheY (P∼CheY). The steady-state level of P∼CheY dictates the direction of rotation of the flagellar motor. The chemotaxis signal in the form of P∼CheY is terminated by the phosphatase CheZ. Efficient dephosphorylation of CheY by CheZ requires two distinct protein-protein interfaces: one involving the strongly conserved C-terminal helix of CheZ (CheZC) tethering the two proteins together and the other constituting an active site for catalytic dephosphorylation. In a previous work (J. Guhaniyogi, V. L. Robinson, and A. M. Stock, J. Mol. Biol. 359:624-645, 2006), we presented high-resolution crystal structures of CheY in complex with the CheZC peptide that revealed alternate binding modes subject to the conformational state of CheY. In this study, we report biochemical and structural data that support the alternate-binding-mode hypothesis and identify key recognition elements in the CheY-CheZC interaction. In addition, we present kinetic studies of the CheZC-associated effect on CheY phosphorylation with its physiologically relevant phosphodonor, the histidine kinase CheA. Our results indicate mechanistic differences in phosphotransfer from the kinase CheA versus that from small-molecule phosphodonors, explaining a modest twofold increase of CheY phosphorylation with the former, observed in this study, relative to a 10-fold increase previously documented with the latter.


Sign in / Sign up

Export Citation Format

Share Document