scholarly journals Mutagenesis at Two Distinct Phosphate-Binding Sites Unravels Their Differential Roles in Regulation of Rubisco Activation and Catalysis

2005 ◽  
Vol 187 (12) ◽  
pp. 4222-4228 ◽  
Author(s):  
Yehouda Marcus ◽  
Hagit Altman-Gueta ◽  
Aliza Finkler ◽  
Michael Gurevitz

ABSTRACT Orthophosphate (Pi) has two antagonistic effects on ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco), stimulation of activation and inhibition of catalysis by competition with the substrate RuBP. The enzyme binds Pi at three distinct sites, two within the catalytic site (where 1P and 5P of ribulose 1,5-bisphosphate [RuBP] bind), and the third at the latch site (a positively charged pocket involved in active-site closure during catalysis). We examined the role of the latch and 5P sites in regulation of Rubisco activation and catalysis by introducing specific mutations in the enzyme of the cyanobacterium Synechocystis sp. strain PCC 6803. Whereas mutations at both sites abolished the Pi-stimulated Rubisco activation, substitution of residues at the 5P site, but not at the latch site, affected the Pi inhibition of Rubisco catalysis. Although some of these mutations substantially reduced the catalytic turnover of Rubisco and increased the Km (RuBP), they had little to moderate effect on the rate of photosynthesis and no effect on photoautotrophic growth. These findings suggest that in cyanobacteria, Rubisco does not limit photosynthesis to the extent previously estimated. These results indicate that both the latch and 5P sites participate in regulation of Rubisco activation, whereas Pi binding only at the 5P site inhibits catalysis in a competitive manner.

Blood ◽  
2008 ◽  
Vol 112 (11) ◽  
pp. 618-618
Author(s):  
Sherine F. Elsawa ◽  
Anne J. Novak ◽  
Steven C Ziesmer ◽  
Luciana L Almada ◽  
Martin E Fernandez-Zapico ◽  
...  

Abstract Waldenström macroglobulinemia (WM) is a B-cell malignancy characterized by the aberrant production of a monoclonal IgM protein that may lead to hyperviscosity. Although this is a major factor causing significant morbidity in patients, little is known about the mechanisms that regulate monoclonal protein synthesis. Cytokines are protein mediators that are known to be involved in many biological processes, and can profoundly affect tumor cells and the tumor microenvironment. Many cytokines have been shown to have potent therapeutic efficacy in preclinical cancer models; however, the role of cytokine networks in WM is not fully understood and few studies have described the precise functional roles of cytokines in WM. To address this issue we performed a multiplex ELISA analysis to test cytokine levels in sera from patients with WM. We found that Rantes/CCL5 is significantly elevated in WM patients and correlates with disease activity. Elevated expression of RANTES in the serum was confirmed by ELISA and was also detected in the bone marrow of WM patients by ELISA and immunohistochemistry. RANTES expression serves as a marker for recruitment of immune cells and is associated with a wide range of immune-mediated diseases. However, the impact of RANTES in WM is not known. We analyzed the expression of receptors for Rantes by flow cytometry and found that WM B cells and stromal cells express CCR1 and CCR3, but not CCR5. Using a standard chemotaxis assay, we determined that Rantes had no effect on B cell or stromal cell recruitment. Rantes also had no effect on B cell or stromal cell survival, however it did promote stromal cell proliferation (p<0.04). The interaction between Rantes and IL-6 has been described in an autoimmune disease model. Since stromal cells secrete significantly more IL-6 than WM B cells, we treated stromal cells with Rantes for 24 hr and found that Rantes increases IL-6 secretion (p<0.03). To characterize the mechanism of Rantes-mediated IL-6 secretion, we transfected stromal cells with an IL-6 promoter construct and treated with Rantes for 12 hr and found a significant increase in IL-6 promoter activity (p<0.0162) indicating Rantes can regulate IL-6 transcription. Bioinformatics analysis of the IL-6 promoter indicates the presence of multiple candidate binding sites for transcription factors that have been previously shown to play a role in the biology of B cells, including NFkB, AP1, and GLI. Co-transfection of stromal cells with an IL-6 reporter construct and a plasmid expressing GLI1, GLI2 or GLI3 demonstrates that GLI2 and GLI3 proteins can regulate the IL-6 promoter. We then transfected stromal cells with a reporter construct containing 8X-GLI binding sites and demonstrate that Rantes can regulate GLI transcription further supporting a role for the interaction between Rantes and IL-6 through GLI transcription factors. IL-6 rich tumor microenvironment supports malignant cells. Elevated IL-6 levels have no effect on survival of BCWM.1 cells or CD19+ 138+ cells from WM patients, but leads to upregulation of IgM secretion by BCWM.1 cells and CD19+ CD138+ cells from WM patients, and increases their proliferation (p<0.0039). IL-6 activates Erk1/2 and Jak/ Stat in WM and stimulation of the IgM secreting cells BCWM.1 with IL-6 in the presence of PD98059 MAPK inhibitor had no effect on IgM secretion. However, stimulation of BCWM.1 cells with IL-6 in the presence of JakI inhibitor abolished the IL-6 mediated IgM secretion suggesting IL-6 mediated increase in IgM secretion occurs through Jak/ Stat signaling pathway. Analysis of Rantes levels in other B cell malignancies including follicular lymphoma, chronic lymphocytic leukemia, monoclonal gammopathy of undetermined significance and multiple myeloma indicates that Rantes is elevated in other B cell lymphoproliferative disorders and suggest Rantes may play a similar role in other malignancies. In summary, our data identifies a novel Rantes-GLI-IL-6 interplay in the stromal microenvironment that promotes IgM production by malignant B cells. This therefore provides multiple new potential therapeutic avenues, targeting both malignant cells and the microenvironment to control malignant cell growth, and immunoglobulin secretion in WM and Ig-mediated diseases.


1980 ◽  
Vol 35 (5-6) ◽  
pp. 416-422 ◽  
Author(s):  
Joachim Vater ◽  
Thomas Gaudszun ◽  
Harald Schamow ◽  
Johann Salnikow

Abstract The Stimulation of the carboxylase reaction by effectors of ribulose 1,5-bisphosphate carboxyl­ ase/oxygenase displays higher sensitivity towards pyridoxal 5'-phosphate inhibition than the catalytical process itself. Pyridoxal 5'-phosphate binding to the enzyme is not affected by the modulators 6-phospho-gluconate and fructose 1,6-bisphosphate at low concentrations at which these agents stimulate the carboxylation rate. At higher concentrations these sugar phosphates protect the enzyme against pyridoxal 5'-phos-phate inhibition in a similar fashion like the substrate ribulose 1,5-bisphosphate. Such protection experiments in combination with spectrophotometrical studies of pyridoxal 5'-phosphate binding demonstrate two binding states of ribulose 1,5-bisphosphate at the reaction centers of the enzyme with different requirements for Mg2+. 6-Phosphogluconate functions as protector only in the presence of Mg2+. Our results imply a competition between pyridoxal 5'-phosphate and substrate or effector sugar phosphates at the reaction centers of the spinach carboxylase. It is proposed that the pyridoxal 5'-phosphate inhibition of the stimulatory activity of these effectors originates from a modification of the regulatory sites of the enzyme caused by pyridoxal 5'-phosphate binding to the catalytical sites.


Cephalalgia ◽  
1983 ◽  
Vol 3 (4) ◽  
pp. 241-247 ◽  
Author(s):  
Lee Kudrow

An hypothesis regarding the possible role of the carotid body in the pathogenesis of cluster headache is presented. It states: 1. The pathways concerned with cyclic cluster periods may begin centrally involving specific areas in the hypothalamus. The major influence of this physiological change is proposed to be an inhibition of the sympathetic and disinhibition of parasympathetic supplies to the carotid body. The result, whether due to increased vasomotor tonus or interruption of intrinsic sympathetic stimulation, is suggested to cause diminished peripheral chemoreceptor activity. 2. The pathway concerned with onset of spontaneous or induced attacks begins, as proposed, with oxygen desaturation-which, upon reaching threshold levels may induce a hyperactive chemoreceptor response, and stimulate through afferent pathways the nuclei of the 7th and 10th cranial nerves and respiratory centers, via the nucleus solitarius. 3. The consequence of this excitation may involve the third suggested pathway resulting in stimulation of peripheral secretory and other receptors innervated by the cranial nerves.


1963 ◽  
Vol 14 (5) ◽  
pp. 704 ◽  
Author(s):  
FHS Roberts ◽  
RF Riek ◽  
RK Keith

Investigations are reported which attempted to define the role of the respective stages of the parasitic life cycle ofOesophagostomum radiatum in the stimulation of resistance in calves to reinfection with this parasite. In one series of experiments with calves reared worm-free, infection was restricted to known stages by treatment with an anthelmintic, and in another series by surgical implants of worms. Subsequent reinfection showed that the early development stages of the parasite up to the early fourth stage larva in the gut lumen, and the exsheathing fluid released at the third and fourth ecdyses, were not essential for the stimulation of resistance. The results also suggest that ability to stimulate resistance increases as the worms mature.


1976 ◽  
Vol 68 (1) ◽  
pp. 142-153 ◽  
Author(s):  
A Haksar ◽  
D V Maudsley ◽  
F G Péron ◽  
E Bedigian

Lanthanum (La+++) is a well-known Ca++ antagonist in a number of biological systems. It was used in the present study to examine the role of Ca++ in the regulation of adenyl cyclase of the adrenal cortex by ACTH. In micromolar concentrations, .La+++ inhibited both cyclic AMP and corticosterone response of isolated adrenal cortex cells to ACTH. However, a number of intracellular processes were not affected by La+++. These include the stimulation of steroidogenesis by dibutyryl cyclic AMP, conversion of several steroid precursors into corticosterone, and stimulation of the latter by glucose. Thus, inhibition of steroidogenesis by La+++ appears to be solely due to an inhibition of ACTH-stimulated cyclic AMP formation. Electron microscope examination showed that La+++ was localized on plasma membrane of the cells and did not appear to penetrate beyond this region. Since La+++ is believed to replace Ca++ at superficial binding sites on the cell membrane, it is proposed that Ca++ at these sites plays an important role in the regulation of adenyl cyclase by ACTH. Similarities in the role of Ca++ in "excitation-contraction" coupling and in the ACTH-adenyl cyclase system raise the possibility that a contractile protein may be involved in the regulation of adenyl cyclase by those hormones which are known to require Ca++ in the process.


2002 ◽  
Vol 383 (12) ◽  
pp. 1947-1951 ◽  
Author(s):  
T.G. Hofmann ◽  
M.L. Schmitz

Abstract While the biochemical mechanisms mediating repression of NFκB activity by glucocorticoids (GCs) are relatively well studied, the role of promoter architecture for the effects of GCs on NFκB remains poorly characterized. Therefore we constructed a set of synthetic promoter reporter constructs containing various numbers of GCresponsive elements (GREs) in distinct distances to NFκB binding sites. TNFαinduced activity of a synthetic promoter controlled by three NFκB binding sites was repressed by dexamethasone. The presence of only one GRE in the vicinity of the κB sites abolished this repression and allowed synergistic transcriptional activation by NFκB and the glucocorticoid receptor (GR). The synergism identified here was not affected by the number of GREs, but strictly depends on the spacing between GREs and κB sites. These experiments reveal that the functional interplay between NFκB and the GR also involves dependent on the promoter context synergistic stimulation of transcription.


Blood ◽  
2006 ◽  
Vol 109 (2) ◽  
pp. 802-810 ◽  
Author(s):  
Eveliina Ihanus ◽  
Liisa M. Uotila ◽  
Anne Toivanen ◽  
Minna Varis ◽  
Carl G. Gahmberg

Abstract Intercellular adhesion molecule 4 (ICAM-4) is a unique member of the ICAM family because of its specific expression on erythroid cells and ability to interact with several types of integrins expressed on blood and endothelial cells. The first reported receptors for ICAM-4 were CD11a/CD18 and CD11b/CD18. In contrast to these 2, the cellular ligands and the functional role of the third β2 integrin, CD11c/CD18, have not been well defined. Here, we show that ICAM-4 functions as a ligand for the monocyte/macrophage-specific CD11c/CD18. Deletion of the individual immunoglobulin domains of ICAM-4 demonstrated that both its domains contain binding sites for CD11c/CD18. Analysis of a panel of ICAM-4 point mutants identified residues that affected binding to the integrin. By molecular modeling the important residues were predicted to cluster in 2 distinct but spatially close regions of the first domain with an extension to the second domain spatially distant from the other residues. We also identified 2 peptides derived from sequences of ICAM-4 that are capable of modulating the binding to CD11c/CD18. CD11c/CD18 is expressed on macrophages in spleen and bone marrow. Inhibition of erythrophagocytosis by anti–ICAM-4 and anti-integrin antibodies suggests a role for these interactions in removal of senescent red cells.


Blood ◽  
2004 ◽  
Vol 104 (11) ◽  
pp. 1737-1737
Author(s):  
Long D. Tieu ◽  
Jim C. Fredenburgh ◽  
Alan R. Stafford ◽  
Jeffrey I. Weitz

Abstract Plasminogen (Pg) is the zymogen of the fibrinolytic enzyme plasmin (Pn). Fibrin (Fn) promotes the activation of Pg by tissue-type plasminogen activator (t-PA) by serving as a template that brings t-PA and Pg into close proximity. In addition, proteolysis of Fn by Pn generates carboxyl-terminal lysine residues that provide nascent high affinity binding sites for Glu-Pg, thereby promoting Pg activation. Pg activation is also enhanced when Glu-Pg is converted to Lys-Pg, a derivative with higher Fn affinity. Therefore, kinetic and functional data suggest that Pg binding to Fn is a key aspect of efficient Pg activation. To explore this concept, we performed binding and kinetic analyses with Mini-Pg, an elastase-derived fragment of Glu-Pg with reduced Fn affinity. Binding of Glu-Pg, Lys-Pg and Mini-Pg to immobilized fibrinogen (Fg) and fibrin monomer (Fm) was monitored by surface plasmon resonance. The affinity of Glu-Pg for Fm is 4-fold higher than that for Fg with Kd values of 3.1 and 12.5 μM, respectively, whereas Lys-Pg binds with high affinity to both Fg and Fm (Kd values of 0.25 and 0.21 μM, respectively). In contrast, Mini-Pg demonstrates weak binding to Fg and Fm with Kd values of 10.5 and 24.5 μM, respectively. To complement the binding experiments, kinetic studies of Pg activation by t-PA were performed in the absence or presence of native Fn clots by monitoring Pn formation using a Pn-directed chromogenic substrate. As expected, the catalytic efficiency of Lys-Pg or Mini-Pg activation by t-PA in the absence of cofactor was higher than that of Glu-Pg (kcat/KM values of 1.3, 0.325, and 0.026 μM−1 min−1, respectively). The catalytic efficiency of Glu-Pg activation by t-PA is 500-fold higher in the presence of Fn than it is in its absence. The stimulatory effect of fibrin was maintained with Lys and Mini-Pg with over 100-fold enhancement in catalytic efficiency of activation. The fibrin-dependent increase in catalytic efficiency was expressed predominantly through a decrease in KM, with values of >20 and 0.2 μM for Glu-Pg activation in the absence and presence of fibrin, respectively. Lys and Mini-Pg also expressed similar enhancements in catalytic efficiency through a decrease in KM. Thus, despite a 100-fold range in their affinities for Fn, the activation of Mini-Pg, Glu-Pg and Lys-Pg by t-PA are all enhanced by at least 2 orders of magnitude in the presence of Fn. These results demonstrate that substrate binding to Fn is not essential for Fn-mediated stimulation of Pg activation by t-PA. To investigate the importance of the Fn-plasminogen activator interaction, activation studies were carried out using urokinase-type plasminogen activator (u-PA), an activator without Fn affinity. In contrast to the results with t-PA, Fn did not enhance u-PA-mediated activation of Glu, Lys or Mini-Pg. The lack of fibrin stimulation of Pg activation by u-PA suggests that the Pg-Fn interaction is not essential to Pg activation. Therefore, the cofactor role of Fn is expressed predominantly through interaction and stimulation of t-PA. These findings support the hypothesis that Fn binding to t-PA may expose cryptic binding sites in the activator that stabilize the formation of the enzyme-substrate complex.


2011 ◽  
Vol 2011 ◽  
pp. 1-12 ◽  
Author(s):  
Zulfiqar Ahmad ◽  
Florence Okafor ◽  
Thomas F. Laughlin

Here we describe the role of charged amino acids at the catalytic sites of Escherichia coli ATP synthase. There are four positively charged and four negatively charged residues in the vicinity of of E. coli ATP synthase catalytic sites. Positive charges are contributed by three arginine and one lysine, while negative charges are contributed by two aspartic acid and two glutamic acid residues. Replacement of arginine with a neutral amino acid has been shown to abrogate phosphate binding, while restoration of phosphate binding has been accomplished by insertion of arginine at the same or a nearby location. The number and position of positive charges plays a critical role in the proper and efficient binding of phosphate. However, a cluster of many positive charges inhibits phosphate binding. Moreover, the presence of negatively charged residues seems a requisite for the proper orientation and functioning of positively charged residues in the catalytic sites. This implies that electrostatic interactions between amino acids are an important constituent of initial phosphate binding in the catalytic sites. Significant loss of function in growth and ATPase activity assays in mutants generated through charge modulations has demonstrated that precise location and stereochemical interactions are of paramount importance.


Sign in / Sign up

Export Citation Format

Share Document