Dendritic Cells Efficiently Induce Protective Antiviral Immunity

1998 ◽  
Vol 72 (5) ◽  
pp. 3812-3818 ◽  
Author(s):  
Burkhard Ludewig ◽  
Stephan Ehl ◽  
Urs Karrer ◽  
Bernhard Odermatt ◽  
Hans Hengartner ◽  
...  

ABSTRACT Cytotoxic T lymphocytes (CTL) are essential for effective immunity to various viral infections. Because of the high speed of viral replication, control of viral infections imposes demanding functional and qualitative requirements on protective T-cell responses. Dendritic cells (DC) have been shown to efficiently acquire, transport, and present antigens to naive CTL in vitro and in vivo. In this study, we assessed the potential of DC, either pulsed with the lymphocytic choriomeningitis virus (LCMV)-specific peptide GP33-41 or constitutively expressing the respective epitope, to induce LCMV-specific antiviral immunity in vivo. Comparing different application routes, we found that only 100 to 1,000 DC had to reach the spleen to achieve protective levels of CTL activation. The DC-induced antiviral immune response developed rapidly and was long lasting. Already at day 2 after a single intravenous immunization with high doses of DC (1 × 105 to 5 × 105), mice were fully protected against LCMV challenge infection, and direct ex vivo cytotoxicity was detectable at day 4 after DC immunization. At day 60, mice were still protected against LCMV challenge infection. Importantly, priming with DC also conferred protection against infections in which the homing of CTL into peripheral organs is essential: DC-immunized mice rapidly cleared an infection with recombinant vaccinia virus-LCMV from the ovaries and eliminated LCMV from the brain, thereby avoiding lethal choriomeningitis. A comparison of DC constitutively expressing the GP33-41 epitope with exogenously peptide-pulsed DC showed that in vivo CTL priming with peptide-loaded DC is not limited by turnover of peptide-major histocompatibility complex class I complexes. We conclude that the priming of antiviral CTL responses with DC is highly efficient, rapid, and long lasting. Therefore, the use of DC should be considered as an efficient means of immunization for antiviral vaccination strategies.

2004 ◽  
Vol 78 (14) ◽  
pp. 7843-7845 ◽  
Author(s):  
Shohreh Zarei ◽  
Shahnaz Abraham ◽  
Jean-Francois Arrighi ◽  
Olivier Haller ◽  
Thomas Calzascia ◽  
...  

ABSTRACT Control of a viral infection in vivo requires a rapid and efficient cytotoxic-T-lymphocyte response. We demonstrate that lentivirus-mediated introduction of antigen in dendritic cells confers a protective antiviral immunity in vivo in a lymphocytic choriomeningitis virus model. Therefore, lentiviral vectors may be excellent vaccine candidates for viral infections.


2006 ◽  
Vol 74 (7) ◽  
pp. 3817-3824 ◽  
Author(s):  
Karen L. Wozniak ◽  
Jatin M. Vyas ◽  
Stuart M. Levitz

ABSTRACT Dendritic cells (DC) have been shown to phagocytose and kill Cryptococcus neoformans in vitro and are believed to be important for inducing protective immunity against this organism. Exposure to C. neoformans occurs mainly by inhalation, and in this study we examined the in vivo interactions of C. neoformans with DC in the lung. Fluorescently labeled live C. neoformans and heat-killed C. neoformans were administered intranasally to C57BL/6 mice. At specific times postinoculation, mice were sacrificed, and lungs were removed. Single-cell suspensions of lung cells were prepared, stained, and analyzed by microscopy and flow cytometry. Within 2 h postinoculation, fluorescently labeled C. neoformans had been internalized by DC, macrophages, and neutrophils in the mouse lung. Additionally, lung DC from mice infected for 7 days showed increased expression of the maturation markers CD80, CD86, and major histocompatibility complex class II. Finally, ex vivo incubation of lung DC from infected mice with Cryptococcus-specific T cells resulted in increased interleukin-2 production compared to the production by DC from naïve mice, suggesting that there was antigen-specific T-cell activation. This study demonstrated that DC in the lung are capable of phagocytosing Cryptococcus in vivo and presenting antigen to C. neoformans-specific T cells ex vivo, suggesting that these cells have roles in innate and adaptive pulmonary defenses against cryptococcosis.


2020 ◽  
Author(s):  
Ozgun Kocabiyik ◽  
Valeria Cagno ◽  
Paulo Jacob Silva ◽  
Yong Zhu ◽  
Laura Sedano ◽  
...  

AbstractInfluenza is one of the most widespread viral infections worldwide and represents a major public health problem. The risk that one of the next pandemics is caused by an influenza strain is very high. It is very important to develop broad-spectrum influenza antivirals to be ready for any possible vaccine shortcomings. Anti-influenza drugs are available but they are far from ideal. Arguably, an ideal antiviral should target conserved viral domains and be virucidal, i.e. irreversibly inhibit viral infectivity. Here, we describe a new class of broad-spectrum anti-influenza macromolecules that meets these criteria and displays exceedingly low toxicity. These compounds are based on a cyclodextrin core modified on its primary face with long hydrophobic linkers terminated in 6’sialyl-N-acetyllactosamine (6’SLN) or 3’SLN. SLN enables nanomolar inhibition of the viruses while the hydrophobic linkers confer irreversibility to the inhibition. The combination of these two properties allows for efficacy in vitro against several human or avian influenza strains, as well as against a 2009 pandemic influenza strain ex vivo. Importantly, we show that, in mice, the compounds provide therapeutic efficacy when administered 24h post-infection allowing 90% survival as opposed to no survival for the placebo and oseltamivir..


Genes ◽  
2020 ◽  
Vol 11 (8) ◽  
pp. 918
Author(s):  
Angela Steyn ◽  
Sarah Keep ◽  
Erica Bickerton ◽  
Mark Fife

The coronaviruses are a large family of enveloped RNA viruses that commonly cause gastrointestinal or respiratory illnesses in the infected host. Avian coronavirus infectious bronchitis virus (IBV) is a highly contagious respiratory pathogen of chickens that can affect the kidneys and reproductive systems resulting in bird mortality and decreased reproductivity. The interferon-inducible transmembrane (IFITM) proteins are activated in response to viral infections and represent a class of cellular restriction factors that restrict the replication of many viral pathogens. Here, we characterize the relative mRNA expression of the chicken IFITM genes in response to IBV infection, in vivo, ex vivo and in vitro using the pathogenic M41-CK strain, the nephropathogenic QX strain and the nonpathogenic Beaudette strain. In vivo we demonstrate a significant upregulation of chIFITM1, 2, 3 and 5 in M41-CK- and QX-infected trachea two days post-infection. In vitro infection with Beaudette, M41-CK and QX results in a significant upregulation of chIFITM1, 2 and 3 at 24 h post-infection. We confirmed a differential innate response following infection with distinct IBV strains and believe that our data provide new insights into the possible role of chIFITMs in early IBV infection.


Blood ◽  
2000 ◽  
Vol 96 (1) ◽  
pp. 91-99 ◽  
Author(s):  
Toshiaki Kikuchi ◽  
Malcolm A. S. Moore ◽  
Ronald G. Crystal

CD40 ligand (CD40L) is essential for the initiation of antigen-specific T-cell responses. This study is based on the hypothesis that dendritic cells (DCs) genetically modified ex vivo to express CD40L will enhance in vivo presentation of tumor antigen to the cellular immune system with consequent induction of antitumor immunity to suppress tumor growth. To examine this concept, subcutaneous murine tumors were injected with bone marrow-derived DCs that had been modified in vitro with an adenovirus (Ad) vector expressing murine CD40L (AdmCD40L). In B16 (H-2b, melanoma) and CT26 (H-2d, colon cancer) murine models, intratumoral injection of 2 × 106 AdmCD40L-modified DCs (CD40L-DCs) to established (day 8) subcutaneous tumors resulted in sustained tumor regression and survival advantage. This antitumor effect was sustained when the number of CD40L-DCs were reduced 10-fold to 2 × 105. Analysis of spleens from CD40L-DC–treated animals demonstrated that CD40L-DCs injected into the subcutaneous CT26 flank tumors migrated to the spleen, resulting in activation of immune-relevant processes. Consistent with this concept, intratumoral administration of CD40L-DCs elicited tumor-specific cytotoxic T-lymphocyte responses, and the transfer of spleen cells from CD40L-DC–treated mice efficiently protected naive mice against a subsequent tumor challenge. In a distant 2-tumor model of metastatic disease, an untreated B16 tumor in the right flank regressed in parallel with a left B16 tumor treated with direct injection of CD40L-DCs. These results support the concept that genetic modification of DCs with a recombinant CD40L adenovirus vector may be a useful strategy for directly activating DCs for cancer immunotherapy.


2011 ◽  
Vol 18 (4) ◽  
pp. 571-579 ◽  
Author(s):  
Soumyabrata Roy ◽  
Shyamal Goswami ◽  
Anamika Bose ◽  
Krishnendu Chakraborty ◽  
Smarajit Pal ◽  
...  

ABSTRACTMyeloid-derived dendritic cells (DCs) generated from monocytes obtained from stage IIIB cervical cancer (CaCx IIIB) patients show dysfunctional maturation; thus, antitumor T cell functions are dysregulated. In an objective to optimize these dysregulated immune functions, the present study is focused on the ability of neem leaf glycoprotein (NLGP), a nontoxic preparation of the neem leaf, to induce optimum maturation of dendritic cells from CaCx IIIB patients.In vitroNLGP treatment of immature DCs (iDCs) obtained from CaCx IIIB patients results in upregulated expression of various cell surface markers (CD40, CD83, CD80, CD86, and HLA-ABC), which indicates DC maturation. Consequently, NLGP-matured DCs displayed balanced cytokine secretions, with type 1 bias and noteworthy functional properties. These DCs displayed substantial T cell allostimulatory capacity and promoted the generation of cytotoxic T lymphocytes (CTLs). Although NLGP-matured DCs derived from CaCx monocytes are generally subdued compared to those with a healthy monocyte origin, considerable revival of the suppressed DC-based immune functions is notedin vitroat a fairly advanced stage of CaCx, and thus, further exploration ofex vivoandin vivoDC-based vaccines is proposed. Moreover, the DC maturating efficacy of NLGP might be much more effective in the earlier stages of CaCx, where the extent of immune dysregulation is less and, thus, the scope of further investigation may be explored.


2006 ◽  
Vol 80 (5) ◽  
pp. 2506-2514 ◽  
Author(s):  
Haixia Zhou ◽  
Stanley Perlman

ABSTRACT Mouse hepatitis virus strain JHM (MHV-JHM) causes acute encephalitis and acute and chronic demyelinating diseases in mice. Dendritic cells (DCs) are key cells in the initiation of innate and adaptive immune responses, and infection of these cells could potentially contribute to a dysregulated immune response; consistent with this, recent results suggest that DCs are readily infected by another strain of mouse hepatitis virus, the A59 strain (MHV-A59). Herein, we show that the JHM strain also productively infected DCs. Moreover, mature DCs were at least 10 times more susceptible than immature DCs to infection with MHV-JHM. DC function was impaired after MHV-JHM infection, resulting in decreased stimulation of CD8 T cells in vitro. Preferential infection of mature DCs was not due to differential expression of the MHV-JHM receptor CEACAM-1a on mature or immature cells or to differences in apoptosis. Although we could not detect infected DCs in vivo, both CD8+ and CD11b+ splenic DCs were susceptible to infection with MHV-JHM directly ex vivo. This preferential infection of mature DCs may inhibit the development of an efficient immune response to the virus.


2020 ◽  
Vol 11 (12) ◽  
pp. 894-914
Author(s):  
Nan Sun ◽  
Li Jiang ◽  
Miaomiao Ye ◽  
Yihan Wang ◽  
Guangwen Wang ◽  
...  

AbstractTripartite motif (TRIM) family proteins are important effectors of innate immunity against viral infections. Here we identified TRIM35 as a regulator of TRAF3 activation. Deficiency in or inhibition of TRIM35 suppressed the production of type I interferon (IFN) in response to viral infection. Trim35-deficient mice were more susceptible to influenza A virus (IAV) infection than were wild-type mice. TRIM35 promoted the RIG-I-mediated signaling by catalyzing Lys63-linked polyubiquitination of TRAF3 and the subsequent formation of a signaling complex with VISA and TBK1. IAV PB2 polymerase countered the innate antiviral immune response by impeding the Lys63-linked polyubiquitination and activation of TRAF3. TRIM35 mediated Lys48-linked polyubiquitination and proteasomal degradation of IAV PB2, thereby antagonizing its suppression of TRAF3 activation. Our in vitro and in vivo findings thus reveal novel roles of TRIM35, through catalyzing Lys63- or Lys48-linked polyubiquitination, in RIG-I antiviral immunity and mechanism of defense against IAV infection.


2021 ◽  
Vol 20 (1) ◽  
Author(s):  
Lien Van Hoecke ◽  
Rein Verbeke ◽  
Heleen Dewitte ◽  
Ine Lentacker ◽  
Karim Vermaelen ◽  
...  

AbstractmRNA therapeutics have become the focus of molecular medicine research. Various mRNA applications have reached major milestones at high speed in the immuno-oncology field. This can be attributed to the knowledge that mRNA is one of nature’s core building blocks carrying important information and can be considered as a powerful vector for delivery of therapeutic proteins to the patient.For a long time, the major focus in the use of in vitro transcribed mRNA was on development of cancer vaccines, using mRNA encoding tumor antigens to modify dendritic cells ex vivo. However, the versatility of mRNA and its many advantages have paved the path beyond this application. In addition, due to smart design of both the structural properties of the mRNA molecule as well as pharmaceutical formulations that improve its in vivo stability and selective targeting, the therapeutic potential of mRNA can be considered as endless.As a consequence, many novel immunotherapeutic strategies focus on the use of mRNA beyond its use as the source of tumor antigens. This review aims to summarize the state-of-the-art on these applications and to provide a rationale for their clinical application.


2020 ◽  
Author(s):  
EA Monson ◽  
KM Crosse ◽  
M Duan ◽  
W Chen ◽  
RD O’Shea ◽  
...  

SummaryLipid droplets (LDs) are increasingly recognized as critical organelles in signalling events, transient protein sequestration and inter-organelle interactions. However, the role LDs play in antiviral innate immune pathways remains unknown. Here we demonstrate that induction of LDs occurs as early as 2 hours post viral infection, is transient, and returns to basal levels by 72 hours. This phenomenon occurred following viral infections, both in vitro and in vivo. Virally driven LD induction was type-I interferon (IFN) independent, however, was dependent on EGFR engagement, offering an alternate mechanism of LD induction in comparison to our traditional understanding of their biogenesis. Additionally, LD induction corresponded with enhanced cellular type-I and -III IFN production in infected cells, with enhanced LD accumulation decreasing viral replication of both HSV-1 and Zika virus (ZIKV). Here, we demonstrate for the first time, that LDs play vital roles in facilitating the magnitude of the early antiviral immune response specifically through the enhanced modulation of IFN following viral infection, and control of viral replication. By identifying LDs as a critical signalling organelle, this data represents a paradigm shift in our understanding of the molecular mechanisms which coordinate an effective antiviral response.


Sign in / Sign up

Export Citation Format

Share Document