scholarly journals mRNA in cancer immunotherapy: beyond a source of antigen

2021 ◽  
Vol 20 (1) ◽  
Author(s):  
Lien Van Hoecke ◽  
Rein Verbeke ◽  
Heleen Dewitte ◽  
Ine Lentacker ◽  
Karim Vermaelen ◽  
...  

AbstractmRNA therapeutics have become the focus of molecular medicine research. Various mRNA applications have reached major milestones at high speed in the immuno-oncology field. This can be attributed to the knowledge that mRNA is one of nature’s core building blocks carrying important information and can be considered as a powerful vector for delivery of therapeutic proteins to the patient.For a long time, the major focus in the use of in vitro transcribed mRNA was on development of cancer vaccines, using mRNA encoding tumor antigens to modify dendritic cells ex vivo. However, the versatility of mRNA and its many advantages have paved the path beyond this application. In addition, due to smart design of both the structural properties of the mRNA molecule as well as pharmaceutical formulations that improve its in vivo stability and selective targeting, the therapeutic potential of mRNA can be considered as endless.As a consequence, many novel immunotherapeutic strategies focus on the use of mRNA beyond its use as the source of tumor antigens. This review aims to summarize the state-of-the-art on these applications and to provide a rationale for their clinical application.

2021 ◽  
Vol 2021 ◽  
pp. 1-12
Author(s):  
Rajib Hossain ◽  
Cristina Quispe ◽  
Jesús Herrera-Bravo ◽  
Md. Shahazul Islam ◽  
Chandan Sarkar ◽  
...  

Lasia spinosa (L.) is used ethnobotanically for the treatment of various diseases, including rheumatoid arthritis, inflammation of the lungs, bleeding cough, hemorrhoids, intestinal diseases, stomach pain, and uterine cancer. This review is aimed at summarizing phytochemistry and pharmacological data with their molecular mechanisms of action. A search was performed in databases such as PubMed, Science Direct, and Google Scholar using the keywords: “Lasia spinosa,” then combined with “ethnopharmacological use,” “phytochemistry,” and “pharmacological activity.” This updated review included studies with in vitro, ex vivo, and in vivo experiments with compounds of known concentration and highlighted pharmacological mechanisms. The research results showed that L. spinosa contains many important nutritional and phytochemical components such as alkanes, aldehydes, alkaloids, carotenoids, flavonoids, fatty acids, ketones, lignans, phenolics, terpenoids, steroids, and volatile oil with excellent bioactivity. The importance of this review lies in the fact that scientific pharmacological evidence supports the fact that the plant has antioxidant, anti-inflammatory, antimicrobial, cytotoxic, antidiarrheal, antihelminthic, antidiabetic, antihyperlipidemic, and antinociceptive effects, while protecting the gastrointestinal system and reproductive. Regarding future toxicological and safety data, more research is needed, including studies on human subjects. In light of these data, L. spinosa can be considered a medicinal plant with effective bioactives for the adjuvant treatment of various diseases in humans.


Nanomaterials ◽  
2021 ◽  
Vol 11 (9) ◽  
pp. 2234
Author(s):  
Anbharasi Lakshmanan ◽  
Roman A. Akasov ◽  
Natalya V. Sholina ◽  
Polina A. Demina ◽  
Alla N. Generalova ◽  
...  

Formulation of promising anticancer herbal drug curcumin as a nanoscale-sized curcumin (nanocurcumin) improved its delivery to cells and organisms both in vitro and in vivo. We report on coupling nanocurcumin with upconversion nanoparticles (UCNPs) using Poly (lactic-co-glycolic Acid) (PLGA) to endow visualisation in the near-infrared transparency window. Nanocurcumin was prepared by solvent-antisolvent method. NaYF4:Yb,Er (UCNP1) and NaYF4:Yb,Tm (UCNP2) nanoparticles were synthesised by reverse microemulsion method and then functionalized it with PLGA to form UCNP-PLGA nanocarrier followed up by loading with the solvent-antisolvent process synthesized herbal nanocurcumin. The UCNP samples were extensively characterised with XRD, Raman, FTIR, DSC, TGA, UV-VIS-NIR spectrophotometer, Upconversion spectrofluorometer, HRSEM, EDAX and Zeta Potential analyses. UCNP1-PLGA-nanocurcumin exhibited emission at 520, 540, 660 nm and UCNP2-PLGA-nanocurmin showed emission at 480 and 800 nm spectral bands. UCNP-PLGA-nanocurcumin incubated with rat glioblastoma cells demonstrated moderate cytotoxicity, 60–80% cell viability at 0.12–0.02 mg/mL marginally suitable for therapeutic applications. The cytotoxicity of UCNPs evaluated in tumour spheroids models confirmed UCNP-PLGA-nanocurcumin therapeutic potential. As-synthesised curcumin-loaded nanocomplexes were administered in tumour-bearing laboratory animals (Lewis lung cancer model) and showed adequate contrast to enable in vivo and ex vivo study of UCNP-PLGA-nanocurcumin bio distribution in organs, with dominant distribution in the liver and lungs. Our studies demonstrate promise of nanocurcumin-loaded upconversion nanoparticles for theranostics applications.


Author(s):  
Sameh A. Abdelnour ◽  
Long Xie ◽  
Abdallah A. Hassanin ◽  
Erwei Zuo ◽  
Yangqing Lu

Clustered regularly interspaced short palindromic repeats (CRISPR) is a promising innovative technology for genomic editing that offers scientists the chance to edit DNA structures and change gene function. It has several possible uses consisting of editing inherited deficiencies, treating, and reducing the spread of disorders. Recently, reports have demonstrated the creation of synthetic RNA molecules and supplying them alongside Cas9 into genome of eukaryotes, since distinct specific regions of the genome can be manipulated and targeted. The therapeutic potential of CRISPR/Cas9 technology is great, especially in gene therapy, in which a patient-specific mutation is genetically edited, or in the treating of human disorders that are untreatable with traditional treatments. This review focused on numerous, in vivo, in vitro, and ex vivo uses of the CRISPR/Cas9 technology in human inherited diseases, discovering the capability of this versatile in medicine and examining some of the main limitations for its upcoming use in patients. In addition to introducing a brief impression of the biology of the CRISPR/Cas9 scheme and its mechanisms, we presented the utmost recent progress in the uses of CRISPR/Cas9 technology in editing and treating of human genetic diseases.


Rheumatology ◽  
2020 ◽  
Vol 59 (12) ◽  
pp. 3952-3960 ◽  
Author(s):  
Daphne N Dorst ◽  
Mark Rijpkema ◽  
Marti Boss ◽  
Birgitte Walgreen ◽  
Monique M A Helsen ◽  
...  

Abstract Objective In RA, synovial fibroblasts become activated. These cells express fibroblast activation protein (FAP) and contribute to the pathogenesis by producing cytokines, chemokines and proteases. Selective depletion in inflamed joints could therefore constitute a viable treatment option. To this end, we developed and tested a new therapeutic strategy based on the selective destruction of FAP-positive cells by targeted photodynamic therapy (tPDT) using the anti-FAP antibody 28H1 coupled to the photosensitizer IRDye700DX. Methods After conjugation of IRDye700DX to 28H1, the immunoreactive binding and specificity of the conjugate were determined. Subsequently, tPDT efficiency was established in vitro using a 3T3 cell line stably transfected with FAP. The biodistribution of [111In]In-DTPA-28H1 with and without IRDye700DX was assessed in healthy C57BL/6N mice and in C57BL/6N mice with antigen-induced arthritis. The potential of FAP-tPDT to induce targeted damage was determined ex vivo by treating knee joints from C57BL/6N mice with antigen-induced arthritis 24 h after injection of the conjugate. Finally, the effect of FAP-tPDT on arthritis development was determined in mice with collagen-induced arthritis. Results 28H1-700DX was able to efficiently induce FAP-specific cell death in vitro. Accumulation of the anti-FAP antibody in arthritic knee joints was not affected by conjugation with the photosensitizer. Arthritis development was moderately delayed in mice with collagen-induced arthritis after FAP-tPDT. Conclusion Here we demonstrate the feasibility of tPDT to selectively target and kill FAP-positive fibroblasts in vitro and modulate arthritis in vivo using a mouse model of RA. This approach may have therapeutic potential in (refractory) arthritis.


Blood ◽  
2008 ◽  
Vol 112 (11) ◽  
pp. 2584-2584
Author(s):  
Anna Maria Wolf ◽  
Kathrin Hochegger ◽  
Robert Zeiser ◽  
Christoph Duerr ◽  
Michael Sixt ◽  
...  

Abstract CD4+CD25+ T cells (Treg) entry into secondary lymphoid organs (SLO) and local expansion after activation is at least in part responsible for their immunosuppressive action. Thus we hypothesized that trapping of adoptively transferred Treg in SLO would be an effective means to tip the balance towards a more immunosuppressive milieu within the LN microenvironment. Systemic application of the sphingosine-phosphate receptor agonist FTY720 has been proven to trap harmful effector T cells in SLO, thereby inhibiting their migration and destruction of target tissue. Here we provide first evidence that selective entrapment of adoptively transferred Treg in inflammatory LN can be achieved by blockade of SP-receptors upon ex vivo exposure of Treg to FTY720 before adoptive transfer. FTY720 exposure did not interfere with proper Treg localization within the T-cell areas of SLO as determined by immunofluorescent microscopy after co-transfer of either FTY720- or solvent exposed and subsequently differentially labelled Treg. However, despite the fact that the in vitro phenotype (including expression of adhesion and chemokine receptors), function (including anergy and suppressive activity) and survival (determined by Annexin/PI staining) of Treg remained unaltered by FTY720, it abrogated their protective effect after adoptive transfer in a murine model of acute experimental glomerulonephritis (determined by quantification of proteinuria and histological analysis) as well as in an acute GvHD model (determined by survival analysis and quantification of the in vivo expansion of luciferase-transgenic effector T cells by bioluminiscence technology). Notably, adoptive transfer of CFSE-labelled Treg revealed a markedly impaired proliferation of Treg in inflammatory SLO when pre-exposed to FTY720 ex vivo. Accordingly, FTY720 blocked Treg-proliferation induced by TCR-stimulation in combination with IL-2 in vitro. In line with this observation, FTY720 completely abolishes IL-2 induced phosphorylation of STAT-5. Thus, SP-1P receptors induce Treg trapping in inflammatory SLO but abrogate their in vivo immunosuppressive potential by inhibition of local Treg expansion.


Blood ◽  
2009 ◽  
Vol 114 (22) ◽  
pp. 2046-2046
Author(s):  
Hetty J Bontkes ◽  
Jurjen Ruben ◽  
Willemijn van den Ancker ◽  
Theresia M Westers ◽  
G. Ossenkoppele ◽  
...  

Abstract Abstract 2046 Poster Board II-23 Introduction: In the majority of cases, initial remission of acute myeloid leukemia (AML) is reached but unfortunately relapse rates remain high and therefore novel treatments are needed. It is thought that recurrent AML originates from chemotherapy resistant quiescent leukemic stem cells (LSC). The application of immunotherapeutic approaches to eradicate LSC remaining after first line chemotherapy may contribute to improved disease outcome. Vaccination strategies have often used dendritic cells (DC) ex vivo pulsed with tumor-derived whole lysates or peptides as modalities to present a broad range of tumor antigens to T cells to stimulate effective anti-tumor T-cell immunity in vivo. It is likely that certain proteins expressed by LSC have a distinct antigenicity as compared to more mature AML blasts and thus provide targets for specific T-cells. Even without identification of specific antigens, LSC can be a useful source of tumor antigens in DC vaccination-based immunotherapy. CD34+CD38- LSC can be identified using malignant stem cell associated cell surface markers including CLL-1 and lineage markers such as CD7, CD19 and CD56. However, the low frequency of these cells precludes the use of LSC derived apoptotic cells or lysates for DC loading. Alternatively, mRNA isolated from LSC can be amplified and subsequently transfected into DC. Materials and Methods: We have made use of the CD38- AML derived cell line MUTZ-3 which contains a subpopulation of CD34+CLL1+ cells which resembles the phenotype of a putative LSC. CLL1+CD34+ and CLL1-CD34- cells were isolated by FACS sorting and total RNA was isolated. mRNA was converted to cDNA and amplified by PCR using the SMART system. Subsequently, mRNA was in vitro transcribed from the amplified cDNA. Mature monocyte derived DC (MoDC) were generated from healthy donor blood and transfected with amplified CLL1+CD34+ derived mRNA and used to stimulate autologous CD8β+ T-cells. After three weekly re-stimulations with CLL1+CD34+ mRNA transfected DC, specificity of the T-cells was analyzed by intracellular IFNγ staining upon 5 hour stimulation with autologous immature MoDC transfected with GFP mRNA, mRNA amplified from unsorted, CLL1+CD34+ or CLL1-CD34- MUTZ-3 subpopulations. Results: Amplification of CLL1 and survivin (also expressed by MUTZ-3) transcripts was confirmed by RT-PCR. After 3 weekly re-stimulations with CLL1+CD34+ amplified RNA transfected DC, 0.04% (range 0.01-0.12%) of the T-cells were positive for IFNγ upon a 5 hr re-stimulation with GFP transfected DC. 0.44% (range 0.04-0.69%) of the T-cells responded to DC transfected with unsorted MUTZ-3 amplified mRNA (p<0.00005 versus GFP control, 2-sided student's T-test), 0.51% (range 0.24-1.35%) responded to DC transfected with CLL1+CD34+ amplified mRNA (p<0.005 versus GFP control) and 0.46% (range 0.24-0.94%) responded to DC transfected with CLL1-CD34- amplified mRNA (p<0.0001 versus GFP control). Conclusion: We show that MoDC transfected with RNA amplified from one MUTZ-3 sub-population resembling the phenotype of LCS cells are capable of inducing T-cells which recognize both cells transfected with mRNA from the LSC resembling MUTZ-3 subset as well as the CLL1-CD34- subset. We are currently testing the efficacy and feasibility of this approach in an autologous setting in vitro. CD8β+ T-cells are stimulated with autologous MoDC from AML patients transfected with amplified mRNA isolated from their own LSC enriched populations. The capacity of these T-cells to kill autologous AML blasts and LSC is subsequently analysed in a 6-colour FACS based cytotoxicity assay. Disclosures: No relevant conflicts of interest to declare.


Antioxidants ◽  
2020 ◽  
Vol 9 (4) ◽  
pp. 348 ◽  
Author(s):  
Georgia-Eirini Deligiannidou ◽  
Rafail-Efraim Papadopoulos ◽  
Christos Kontogiorgis ◽  
Anastasia Detsi ◽  
Eugenia Bezirtzoglou ◽  
...  

The natural process of aging gradually causes changes in living organisms, leading to the deterioration of organs, tissues, and cells. In the case of osteoarthritis (OA), the degradation of cartilage is a result of both mechanical stress and biochemical factors. Natural products have already been evaluated for their potential role in the prevention and treatment of OA, providing a safe and effective adjunctive therapeutic approach. This review aimed to assess the therapeutic potential of natural products and their derivatives in osteoarthritis via a systematic search of literature after 2008, including in vitro, in vivo, ex vivo, and animal models, along with clinical trials and meta-analysis. Overall, 170 papers were obtained and screened. Here, we presented findings referring to the preventative and therapeutic potential of 17 natural products and 14 naturally occurring compounds, underlining, when available, the mechanisms implicated. The nature of OA calls to initially focus on the management of symptoms, and, in that context, several naturally occurring compounds have been utilized. Underlying a global need for more sustainable natural sources for treatment, the evidence supporting their chondroprotective potential is still building up. However, arriving at that kind of solution requires more clinical research, targeting the implications of long-term treatment, adverse effects, and epigenetic implications.


Author(s):  
Dimitrios Kouroupis ◽  
Diego Correa

Mesenchymal stem/stromal cell (MSC) exist within their in vivo niches as part of heterogeneous cell populations, exhibiting variable stemness potential and supportive functionalities. Conventional extensive 2D in vitro MSC expansion, aimed at obtaining clinically relevant therapeutic cell numbers, results in detrimental effects on both cellular characteristics (e.g., phenotypic changes and senescence) and functions (e.g., differentiation capacity and immunomodulatory effects). These deleterious effects, added to the inherent inter-donor variability, negatively affect the standardization and reproducibility of MSC therapeutic potential. The resulting manufacturing challenges that drive the qualitative variability of MSC-based products is evident in various clinical trials where MSC therapeutic efficacy is moderate or, in some cases, totally insufficient. To circumvent these limitations, various in vitro/ex vivo techniques have been applied to manufacturing protocols to induce specific features, attributes, and functions in expanding cells. Exposure to inflammatory cues (cell priming) is one of them, however, with untoward effects such as transient expression of HLA-DR preventing allogeneic therapeutic schemes. MSC functionalization can be also achieved by in vitro 3D culturing techniques, in an effort to more closely recapitulate the in vivo MSC niche. The resulting spheroid structures provide spatial cell organization with increased cell–cell interactions, stable, or even enhanced phenotypic profiles, and increased trophic and immunomodulatory functionalities. In that context, MSC 3D spheroids have shown enhanced “medicinal signaling” activities and increased homing and survival capacities upon transplantation in vivo. Importantly, MSC spheroids have been applied in various preclinical animal models including wound healing, bone and osteochondral defects, and cardiovascular diseases showing safety and efficacy in vivo. Therefore, the incorporation of 3D MSC culturing approach into cell-based therapy would significantly impact the field, as more reproducible clinical outcomes may be achieved without requiring ex vivo stimulatory regimes. In the present review, we discuss the MSC functionalization in 3D settings and how this strategy can contribute to an improved MSC-based product for safer and more effective therapeutic applications.


2019 ◽  
Vol 40 (Supplement_1) ◽  
Author(s):  
S Sugihara ◽  
T Ichiki ◽  
Y Chen ◽  
G J Harty ◽  
D M Heublen ◽  
...  

Abstract Introduction The rapid increase of patients of heart failure (HF) is a major health burden worldwide. Most importantly is the need to develop innovative new drugs for treatment of HF, such as sacubitril/valsartan which in part functions by enhancing the natriuretic peptides (NPs). We engineered NPA7 as a novel 30 amino acid bispecific designer peptide which activates the particulate guanylyl cyclase A receptor (pGC-A)/cGMP and for which the NPs both ANP and BNP are ligands and the Mas-receptor (MasR)/cAMP pathways for Angiotensin 1–7 (Ang1–7) is the endogenous ligand. We previously reported that acute intravenous (IV) administration of NPA7 shows cardiorenal protective and renin-aldosterone suppressing actions that go beyond the native peptides, BNP or Ang 1–7, which may have therapeutic potential for HF. Purpose To support the clinical development of NPA7 as a potential therapy in HF which promotes NP and MasR pathways, we investigated the actions and stability of subcutaneous (SQ) administration of NPA7 in normal canines. We also defined NPA7's peptide stability and metabolites in canine plasma. Methods Plasma and urinary cGMP, cardiorenal and renin-aldosterone responses to SQ injection (10μg/kg) were determined over 4 hours in normal canines (n=5) in vivo. Ex vivo, we established stability of NPA7 and key metabolites in canine serum using liquid chromatography-mass spectrometry (LC-MS). Data are expressed as mean ± SEM. * P<0.05 vs. BL. Results In vivo, SQ NPA7 resulted in a sustained increase at 2 hours in plasma (BL: 10±3; 120 min: 30±6* pmol/ml) and urinary (BL: 1033±198; 120 min: 5792±857* pmol/min) cGMP, GFR (BL: 29±6; 120 min: 70±12* ml/min) and sodium excretion (BL: 18±10; 120 min: 144±33* ueq/min). We observed a gradual reduction in BP at 60 min (BL: 109±4; 60 min: 99±7* mmHg) with a sustained decrease in PCWP at 4 hours (BL: 5±0.9; 240 min: 3.1±0.6* mmHg). SQ NPA7 also suppressed plasma renin and aldosterone up to 3 hours after SQ injection. LC-MS revealed that NPA7 was highly stable with both the pGC-A and MasR activating moieties intact ex vivo in canine serum with a disappearance time of 2 hours. We also identified 2 major NPA7 metabolites NPA71–27 and NPA71–28. Conclusions SQ NPA7 possesses cGMP activating, cardiac unloading, diuretic, natriuretic, and renin-aldosterone suppressing actions in normal canines. NPA7 is also highly stable in serum. These studies support SQ administration as an effective delivery strategy for NPA7, a first-in-class innovative bispecific dual pGC-A/MasR activator now in preclinical development for HF.


2015 ◽  
Vol 33 (3_suppl) ◽  
pp. 571-571
Author(s):  
Christos Polytarchou ◽  
Daniel W. Hommes ◽  
Tiziana Palumbo ◽  
Maria Hatziapostolou ◽  
Georgios Koukos ◽  
...  

571 Background: Inflammatory Bowel Diseases (IBD) consist of ulcerative colitis (UC) and Crohn’s Disease (CD), which are characterized by activation of inflammatory responses. Patients with longstanding UC are at high risk of developing colorectal cancer. The identification of novel molecular targets with therapeutic potential for UC and UC-related dysplasia are of major importance. Methods: Using a high throughput functional suppressor screen of the human microRNAome, we identified microRNAs involved in the regulation nuclear factor kappa beta (NF-κB). We correlated microRNA expression levels with different clinicopathological parameters in 401 colonic specimens derived from patients with UC, CD, irritable bowel syndrome (IBS), sporadic colon cancer (CRC), colitis-associated cancer (CAC) and control subjects. Bioinformatic and molecular analyses were employed for the study of micoRNA-regulated signaling pathways. A microRNA specific chemical inhibitor was used to treat colonic biopsies ex vivo and murine CAC development in vivo. Results: The microRNA screen identified miR-214 as master regulator of NF-κB. MiR-214 levels are increased in colonic tissues from UC and CAC, but not from CD, IBS and CRC patients and positively correlate with UC disease activity and duration. STAT3 regulates miR-214 expression in colonocytes in vitro and STAT3 and miR-214 levels positively correlate in UC and CAC. MiR-214 regulates the expression of phosphatase and tensin homolog (PTEN) and PDZ and LIM domain 2 (PDLIM2) and both are decreased in colonic tissues of UC and CAC patients. MiR-214 is amplified through a feedback loop circuit and its overexpression increases the tumorigenic and invasive phenotype of colon cancer cells. A chemical miR-214 inhibitor perturbs this circuit in colonic biopsies from UC patients ex vivo while intracolonic delivery suppresses CAC growth in mice. Conclusions: Our findings demonstrate a gene controlling the inflammatory response specifically in UC and CAC. The miR-214 molecular circuit activity correlates with UC disease activity and duration. Activation of this circuit contributes to colitis-associated colon carcinogenesis, and its suppression has therapeutic potential for patients with UC-related dysplasia.


Sign in / Sign up

Export Citation Format

Share Document