scholarly journals B1 Lymphocytes and Myeloid Dendritic Cells in Lymphoid Organs Are Preferential Extratumoral Sites of Parvovirus Minute Virus of Mice Prototype Strain Expression

2005 ◽  
Vol 79 (6) ◽  
pp. 3517-3524 ◽  
Author(s):  
Zahari Raykov ◽  
Larissa Savelyeva ◽  
Ginette Balboni ◽  
Thomas Giese ◽  
Jean Rommelaere ◽  
...  

ABSTRACT Due to their oncolytic properties and apathogenicity, autonomous parvoviruses have attracted significant interest as possible anticancer agents. Recent preclinical studies provided evidence of the therapeutic potential of minute virus of mice prototype strain (MVMp) and its recombinant derivatives. In a murine model of hemangiosarcoma, positive therapeutic outcome correlated with high intratumoral expression of MVMp-encoded genes in tumors and lymphoid organs, especially in tumor-draining lymph nodes. The source and relevance of this extratumoral expression, which came as a surprise because of the known fibrotropism of MVMp, remained unclear. In the present study, we investigated (i) whether the observed expression pattern occurs in different tumor models, (ii) which cell population is targeted by the virus, and (iii) the immunological consequences of this infection. Significant MVMp gene expression was detected in lymphoid tissues from infected tumor-free as well as melanoma-, lymphoma-, and hemangiosarcoma-bearing mice. This expression was especially marked in lymph nodes draining virus-injected tumors. Fluorescent in situ hybridization analysis, multicolor fluorescence-activated cell sorting, and quantitative reverse transcription-PCR revealed that MVMp was expressed in rare subpopulations of CD11b (Mac1)-positive cells displaying CD11c+ (myeloid dendritic cells [MDC]) or CD45B (B220+ [B1 lymphocytes]) markers. Apart from the late deletion of cytotoxic memory cells (CD8+ CD44+ CD62L−), this infection did not lead to significant alteration of the immunological profile of cells populating lymphoid organs. However, subtle changes were detected in the production of specific proinflammatory cytokines in lymph nodes from virus-treated animals. Considering the role of B1 lymphocytes and MDC in cancer and immunological surveillance, the specific ability of these cell types to sustain parvovirus-driven gene expression may be exploited in gene therapy protocols.

2003 ◽  
Vol 71 (4) ◽  
pp. 2153-2162 ◽  
Author(s):  
Toshiki Nishi ◽  
Kazuichi Okazaki ◽  
Kimio Kawasaki ◽  
Toshiro Fukui ◽  
Hiroyuki Tamaki ◽  
...  

ABSTRACT We previously described an animal model of Helicobacter pylori-induced follicular gastritis in neonatally thymectomized (nTx) mice. However, it is still not clear whether antigen-presenting dendritic cells (DCs) in the stomach have a role in the development of secondary follicles in H. pylori-infected nTx mice. We investigated the distribution of DC subsets using this model and examined their roles. To identify lymphoid and myeloid DCs, sections were stained with anti-CD11c (pan-DC marker) in combination with anti-CD8α (lymphoid DC marker) or anti-CD11b (myeloid DC marker) and were examined with a confocal microscope. Expression of macrophage inflammatory protein 3α (MIP-3α), which chemoattracts immature DCs, was analyzed by real-time PCR and immunohistochemistry. Follicular dendritic cells (FDCs) were stained with anti-SKY28 antibodies. In noninfected nTx mice, a few myeloid and lymphoid DCs were observed in the bottom portion of the lamina propria, whereas in H. pylori-infected nTx mice, there was an increased influx of myeloid DCs throughout the lamina propria. FDC staining was also observed in the stomachs of members of the infected group. MIP-3α gene expression was upregulated in the infected nTx group, and the immunohistochemistry analysis revealed MIP-3α-positive epithelial cells. These data suggest that H. pylori infection upregulates MIP-3α gene expression in gastric epithelial cells and induces an influx of myeloid DCs in the lamina propria of the gastric mucosa in nTx mice. Myeloid DCs and FDCs might contribute to the development of gastric secondary lymphoid follicles in H. pylori-infected nTx mice.


2002 ◽  
Vol 76 (24) ◽  
pp. 12634-12645 ◽  
Author(s):  
Carlos Ros ◽  
Christoph J. Burckhardt ◽  
Christoph Kempf

ABSTRACT The cytoplasmic trafficking of the prototype strain of minute virus of mice (MVMp) was investigated by analyzing and quantifying the effect of drugs that reduce or abolish specific cellular functions on the accumulation of viral macromolecules. With this strategy, it was found that a low endosomal pH is required for the infection, since bafilomycin A 1 and chloroquine, two pH-interfering drugs, were similarly active against MVMp. Disruption of the endosomal network by brefeldin A interfered with MVMp infection, indicating that viral particles are routed farther than the early endocytic compartment. Pulse experiments with endosome-interfering drugs showed that the bulk of MVMp particles remained in the endosomal compartment for several hours before its release to the cytosol. Drugs that block the activity of the proteasome by different mechanisms, such as MG132, lactacystin, and epoxomicin, all strongly blocked MVMp infection. Pulse experiments with the proteasome inhibitor MG132 indicated that MVMp interacts with cellular proteasomes after endosomal escape. The chymotrypsin-like but not the trypsin-like activity of the proteasome is required for the infection, since the chymotrypsin inhibitors N-tosyl-l-phenylalanine chloromethyl ketone and aclarubicin were both effective in blocking MVMp infection. However, the trypsin inhibitor Nα-p-tosyl-l-lysine chloromethyl ketone had no effect. These results suggest that the ubiquitin-proteasome pathway plays an essential role in the MVMp life cycle, probably assisting at the stages of capsid disassembly and/or nuclear translocation.


2011 ◽  
Vol 39 (1) ◽  
pp. 112-118 ◽  
Author(s):  
JASPER C.A. BROEN ◽  
PHILLIPE DIEUDE ◽  
MADELON C. VONK ◽  
LORENZO BERETTA ◽  
FRANCISCO D. CARMONA ◽  
...  

Objective.Polymorphisms in the genes encoding interleukin 4 (IL4), interleukin 13 (IL13), and their corresponding receptors have been associated with multiple immune-mediated diseases. Our aim was to validate these previous observations in patients with systemic sclerosis (SSc) and scrutinize the effect of the polymorphisms on gene expression in various populations of peripheral blood leukocytes.Methods.We genotyped a cohort of 2488 patients with SSc and 2246 healthy controls from The Netherlands, Spain, United Kingdom, Italy, Germany, and France. Taqman assays were used to genotype single-nucleotide polymorphisms (SNP) in the following genes: (1) IL4 (−590C>T/rs2243250); (2) IL4 receptor alpha (IL4RA) (Q576R/rs1801275); (3) IL13 (R130Q/rs20541 and −1112C>T/rs1800925); and (4) IL13RA1 (43163G>A/rs6646259). The effect of these polymorphisms on expression of the corresponding genes was assessed using quantitative RT-PCR on RNA derived from peripheral blood B cells, T cells, plasmacytoid dendritic cells, monocytes, and myeloid dendritic cells. We investigated whether these polymorphisms influenced development of pulmonary complications over 15 years in patients with SSc.Results.None of the investigated polymorphisms was associated with SSc or any SSc clinical subtype. We did not observe any effect on transcript levels in the cell subtypes or on development of pulmonary complications.Conclusion.Our data showed that polymorphisms in IL4, IL13, and their receptors do not play a role in SSc and do not influence the expression of their corresponding transcript in peripheral blood cells.


2010 ◽  
Vol 207 (4) ◽  
pp. 823-836 ◽  
Author(s):  
Brian T. Edelson ◽  
Wumesh KC ◽  
Richard Juang ◽  
Masako Kohyama ◽  
Loralyn A. Benoit ◽  
...  

Although CD103-expressing dendritic cells (DCs) are widely present in nonlymphoid tissues, the transcription factors controlling their development and their relationship to other DC subsets remain unclear. Mice lacking the transcription factor Batf3 have a defect in the development of CD8α+ conventional DCs (cDCs) within lymphoid tissues. We demonstrate that Batf3−/− mice also lack CD103+CD11b− DCs in the lung, intestine, mesenteric lymph nodes (MLNs), dermis, and skin-draining lymph nodes. Notably, Batf3−/− mice displayed reduced priming of CD8 T cells after pulmonary Sendai virus infection, with increased pulmonary inflammation. In the MLNs and intestine, Batf3 deficiency resulted in the specific lack of CD103+CD11b− DCs, with the population of CD103+CD11b+ DCs remaining intact. Batf3−/− mice showed no evidence of spontaneous gastrointestinal inflammation and had a normal contact hypersensitivity (CHS) response, despite previous suggestions that CD103+ DCs were required for immune homeostasis in the gut and CHS. The relationship between CD8α+ cDCs and nonlymphoid CD103+ DCs implied by their shared dependence on Batf3 was further supported by similar patterns of gene expression and their shared developmental dependence on the transcription factor Irf8. These data provide evidence for a developmental relationship between lymphoid organ–resident CD8α+ cDCs and nonlymphoid CD103+ DCs.


1998 ◽  
Vol 18 (1) ◽  
pp. 409-419 ◽  
Author(s):  
Laurent Deleu ◽  
François Fuks ◽  
Dimitry Spitkovsky ◽  
Rita Hörlein ◽  
Steffen Faisst ◽  
...  

ABSTRACT The minute virus of mice, an autonomous parvovirus, requires entry of host cells into the S phase of the cell cycle for its DNA to be amplified and its genes expressed. This work focuses on the P4 promoter of this parvovirus, which directs expression of the transcription unit encoding the parvoviral nonstructural polypeptides. These notably include protein NS1, necessary for the S-phase-dependent burst of parvoviral DNA amplification and gene expression. The activity of the P4 promoter is shown to be regulated in a cell cycle-dependent manner. At the G1/S-phase transition, the promoter is activated via a cis-acting DNA element which interacts with phase-specific complexes containing the cellular transcription factor E2F. It is inhibited, on the other hand, in cells arrested in G1 due to contact inhibition. This inhibitory effect is not observed in serum-starved cells. It is mediated in cis by cyclic AMP response elements (CREs). Unlike serum-starved cells, confluent cells accumulate the cyclin-dependent kinase inhibitor p27, suggesting that the switch from CRE-mediated activation to CRE-mediated repression involves the p27 protein. Accordingly, plasmid-driven overexpression of p27 causes down-modulation of promoter P4 in growing cells, depending on the presence of at least two functional CREs. No such effect is observed with two other cyclin-dependent kinase inhibitors, p16 and p21. Given the importance of P4-driven synthesis of protein NS1 in parvoviral DNA amplification and gene expression, the stringent S-phase dependency of promoter P4 is likely a major determinant of the absolute requirement of the minute virus of mice for host cell proliferation.


1998 ◽  
Vol 188 (6) ◽  
pp. 1075-1082 ◽  
Author(s):  
Angel Porgador ◽  
Kari R. Irvine ◽  
Akiko Iwasaki ◽  
Brian H. Barber ◽  
Nicholas P. Restifo ◽  
...  

Cutaneous gene (DNA) bombardment results in substantial expression of the encoded antigen in the epidermal layer as well as detectable expression in dendritic cells (DC) in draining lymph nodes (LNs). Under these conditions, two possible modes of DC antigen presentation to naive CD8+ T cells might exist: (a) presentation directly by gene-transfected DC trafficking to local lymph nodes, and (b) cross-presentation by untransfected DC of antigen released from or associated with transfected epidermal cells. The relative contributions of these distinct modes of antigen presentation to priming for cytotoxic T cell (CTL) responses have not been clearly established. Here we show that LN cells directly expressing the DNA-encoded antigen are rare; 24 h after five abdominal skin bombardments, the number of these cells does not exceed 50–100 cells in an individual draining LN. However, over this same time period, the total number of CD11c+ DC increases more than twofold, by an average of 20,000–30,000 DC per major draining node. This augmentation is due to gold bombardment and is independent of the presence of plasmid DNA. Most antigen-bearing cells in the LNs draining the site of DNA delivery appear to be DC and can be depleted by antibodies to an intact surface protein encoded by cotransfected DNA. This finding of predominant antigen presentation by directly transfected cells is also consistent with data from studies on cotransfection with antigen and CD86-encoding DNA, showing that priming of anti-mutant influenza nucleoprotein CTLs with a single immunization is dependent upon coexpression of the DNAs encoding nucleoprotein and B7.2 in the same cells. These observations provide insight into the relative roles of direct gene expression and cross-presentation in CD8+ T cell priming using gene gun immunization, and indicate that augmentation of direct DC gene expression may enhance such priming.


2005 ◽  
Vol 79 (15) ◽  
pp. 9608-9617 ◽  
Author(s):  
Pamela Österlund ◽  
Ville Veckman ◽  
Jukka Sirén ◽  
Kevin M. Klucher ◽  
John Hiscott ◽  
...  

ABSTRACT Dendritic cells (DCs) respond to microbial infections by undergoing phenotypic maturation and by producing multiple cytokines. In the present study, we analyzed the ability of influenza A and Sendai viruses to induce DC maturation and activate tumor necrosis factor alpha (TNF-α), alpha/beta interferon (IFN-α/β), and IFN-like interleukin-28A/B (IFN-λ2/3) and IL-29 (IFN-λ1) gene expression in human monocyte-derived myeloid DCs (mDC). The ability of influenza A virus to induce mDC maturation or enhance the expression of TNF-α, IFN-α/β, interleukin-28 (IL-28), and IL-29 genes was limited, whereas Sendai virus efficiently induced mDC maturation and enhanced cytokine gene expression. Influenza A virus-induced expression of TNF-α, IFN-α, IFN-β, IL-28, and IL-29 genes was, however, dramatically enhanced when cells were pretreated with IFN-α. IFN-α priming led to increased expression of Toll-like receptor 3 (TLR3), TLR7, TLR8, MyD88, TRIF, and IFN regulatory factor 7 (IRF7) genes and enhanced influenza-induced phosphorylation and DNA binding of IRF3. Influenza A virus also enhanced the binding of NF-κB to the respective NF-κB elements of the promoters of IFN-β and IL-29 genes. In mDC IL-29 induced MxA protein expression and possessed antiviral activity against influenza A virus, although this activity was lower than that of IFN-α or IFN-β. Our results show that in human mDCs viruses can readily induce the expression of IL-28 and IL-29 genes whose gene products are likely to contribute to the host antiviral response.


Sign in / Sign up

Export Citation Format

Share Document