scholarly journals Escherichia coli SRP, Its Protein Subunit Ffh, and the Ffh M Domain Are Able To Selectively Limit Membrane Protein Expression When Overexpressed

mBio ◽  
2010 ◽  
Vol 1 (2) ◽  
Author(s):  
Ido Yosef ◽  
Elena S. Bochkareva ◽  
Eitan Bibi

ABSTRACT The Escherichia coli signal recognition particle (SRP) system plays an important role in membrane protein biogenesis. Previous studies have suggested indirectly that in addition to its role during the targeting of ribosomes translating membrane proteins to translocons, the SRP might also have a quality control role in preventing premature synthesis of membrane proteins in the cytoplasm. This proposal was studied here using cells simultaneously overexpressing various membrane proteins and either SRP, the SRP protein Ffh, its 4.5S RNA, or the Ffh M domain. The results show that SRP, Ffh, and the M domain are all able to selectively inhibit the expression of membrane proteins. We observed no apparent changes in the steady-state mRNA levels or membrane protein stability, suggesting that inhibition may occur at the level of translation, possibly through the interaction between Ffh and ribosome-hydrophobic nascent chain complexes. Since E. coli SRP does not have a eukaryote-like translation arrest domain, we discuss other possible mechanisms by which this SRP might regulate membrane protein translation when overexpressed. IMPORTANCE The eukaryotic SRP slows down translation of SRP substrates by cytoplasmic ribosomes. This activity is important for preventing premature synthesis of secretory and membrane proteins in the cytoplasm. It is likely that an analogous quality control step would be required in all living cells. However, on the basis of its composition and domain structure and limited in vitro studies, it is believed that the E. coli SRP is unable to regulate ribosomes translating membrane proteins. Nevertheless, several in vivo studies have suggested otherwise. To address this issue further in vivo, we utilized unbalanced conditions under which E. coli simultaneously overexpresses SRP and each of several membrane or cytosolic proteins. Surprisingly, our results clearly show that the E. coli SRP is capable of regulating membrane protein synthesis and demonstrate that the M domain of Ffh mediates this activity. These results thus open the way for mechanistic characterization of this quality control process in bacteria.

2017 ◽  
Vol 199 (9) ◽  
Author(s):  
Yunxue Guo ◽  
Xiaoxiao Liu ◽  
Baiyuan Li ◽  
Jianyun Yao ◽  
Thomas K. Wood ◽  
...  

ABSTRACT Host-associated bacteria, such as Escherichia coli, often encounter various host-related stresses, such as nutritional deprivation, oxidative stress, and temperature shifts. There is growing interest in searching for small endogenous proteins that mediate stress responses. Here, we characterized the small C-tail-anchored inner membrane protein ElaB in E. coli. ElaB belongs to a class of tail-anchored inner membrane proteins with a C-terminal transmembrane domain but lacking an N-terminal signal sequence for membrane targeting. Proteins from this family have been shown to play vital roles, such as in membrane trafficking and apoptosis, in eukaryotes; however, their role in prokaryotes is largely unexplored. Here, we found that the transcription of elaB is induced in the stationary phase in E. coli and stationary-phase sigma factor RpoS regulates elaB transcription by binding to the promoter of elaB. Moreover, ElaB protects cells against oxidative stress and heat shock stress. However, unlike membrane peptide toxins TisB and GhoT, ElaB does not lead to cell death, and the deletion of elaB greatly increases persister cell formation. Therefore, we demonstrate that disruption of C-tail-anchored inner membrane proteins can reduce stress resistance; it can also lead to deleterious effects, such as increased persistence, in E. coli. IMPORTANCE Escherichia coli synthesizes dozens of poorly understood small membrane proteins containing a predicted transmembrane domain. In this study, we characterized the function of the C-tail-anchored inner membrane protein ElaB in E. coli. ElaB increases resistance to oxidative stress and heat stress, while inactivation of ElaB leads to high persister cell formation. We also demonstrated that the transcription of elaB is under the direct regulation of stationary-phase sigma factor RpoS. Thus, our study reveals that small inner membrane proteins may have important cellular roles during the stress response.


2018 ◽  
Vol 85 (4) ◽  
Author(s):  
Meng Liu ◽  
Peipei Zhang ◽  
Yanping Zhu ◽  
Ting Lu ◽  
Yemin Wang ◽  
...  

ABSTRACTAs with most annotated two-component systems (TCSs) ofStreptomyces coelicolor, the function of TCS SCO2120/2121 was unknown. Based on our findings, we have designated this TCS MacRS, formorphogenesis andactinorhodin regulator/sensor. Our study indicated that either single or double mutation of MacRS largely blocked production of actinorhodin but enhanced formation of aerial mycelium. Chromatin immunoprecipitation (ChIP) sequencing, using anS. coelicolorstrain expressing MacR-Flag fusion protein, identifiedin vivotargets of MacR, and DNase I footprinting of these targets revealed a consensus sequence for MacR binding, TGAGTACnnGTACTCA, containing two 7-bp inverted repeats. A genome-wide search revealed sites identical or highly similar to this consensus sequence upstream of six genes encoding putative membrane proteins or lipoproteins. These predicted sites were confirmed as MacR binding sites by DNase I footprinting and electrophoretic mobility shift assaysin vitroand by ChIP-quantitative PCRin vivo, and transcriptional analyses demonstrated that MacR significantly impacts expression of these target genes. Disruption of three of these genes,sco6728,sco4924, andsco4011, markedly accelerated aerial mycelium formation, indicating that their gene products are novel morphogenic factors. Two-hybrid assays indicated that these three proteins, which we have named morphogenic membrane protein A (MmpA; SCO6728), MmpB (SCO4924), and MmpC (SCO4011), interact with one another and with the putative membrane protein and MacR target SCO4225. Notably, SAV6081/82 and SVEN1780/81, homologs of MacRS TCS fromS. avermitilisandS. venezuelae, respectively, can substitute for MacRS, indicating functional conservation. Our findings reveal a role for MacRS in cellular morphogenesis and secondary metabolism inStreptomyces.IMPORTANCETCSs help bacteria adapt to environmental stresses by altering gene expression. However, the roles and corresponding regulatory mechanisms of most TCSs in theStreptomycesmodel strainS. coelicolorare unknown. We investigated the previously uncharacterized MacRS TCS and identified the core DNA recognition sequence, two seven-nucleotide inverted repeats, for the DNA-binding protein MacR. We further found that MacR directly controls a group of membrane proteins, including MmpA-C, which are novel morphogenic factors that delay formation of aerial mycelium. We also discovered that these membrane proteins interact with one another and that otherStreptomycesspecies have conserved MacRS homologs. Our findings suggest a conserved role for MacRS in morphogenesis and/or other membrane-associated activities. Additionally, our study showed that MacRS impacts, albeit indirectly, the production of the signature metabolite actinorhodin, further suggesting that MacRS and its homologs function as novel pleiotropic regulatory systems inStreptomyces.


2020 ◽  
Vol 86 (24) ◽  
Author(s):  
Erin M. Nawrocki ◽  
Hillary M. Mosso ◽  
Edward G. Dudley

ABSTRACT Enterohemorrhagic Escherichia coli (EHEC) strains, including E. coli O157:H7, cause severe illness in humans due to the production of Shiga toxin (Stx) and other virulence factors. Because Stx is coregulated with lambdoid prophage induction, its expression is especially susceptible to environmental cues. Infections with Stx-producing E. coli can be difficult to model due to the wide range of disease outcomes: some infections are relatively mild, while others have serious complications. Probiotic organisms, members of the gut microbiome, and organic acids can depress Stx production, in many cases by inhibiting the growth of EHEC strains. On the other hand, the factors currently known to amplify Stx act via their effect on the stx-converting phage. Here, we characterize two interactive mechanisms that increase Stx production by O157:H7 strains: first, direct interactions with phage-susceptible E. coli, and second, indirect amplification by secreted factors. Infection of susceptible strains by the stx-converting phage can expand the Stx-producing population in a human or animal host, and phage infection has been shown to modulate virulence in vitro and in vivo. Acellular factors, particularly colicins and microcins, can kill O157:H7 cells but may also trigger Stx expression in the process. Colicins, microcins, and other bacteriocins have diverse cellular targets, and many such molecules remain uncharacterized. The identification of additional Stx-amplifying microbial interactions will improve our understanding of E. coli O157:H7 infections and help elucidate the intricate regulation of pathogenicity in EHEC strains.


2017 ◽  
Vol 62 (1) ◽  
Author(s):  
Yu-Feng Zhou ◽  
Meng-Ting Tao ◽  
Yu-Zhang He ◽  
Jian Sun ◽  
Ya-Hong Liu ◽  
...  

ABSTRACT Antimicrobial resistance among uropathogens has increased the rates of infection-related morbidity and mortality. Antofloxacin is a novel fluoroquinolone with broad-spectrum antibacterial activity against urinary Gram-negative bacilli, such as Escherichia coli. This study monitored the in vivo efficacy of antofloxacin using bioluminescent imaging and determined pharmacokinetic (PK)/pharmacodynamic (PD) targets against E. coli isolates in a neutropenic murine thigh infection model. The PK properties were determined after subcutaneous administration of antofloxacin at 2.5, 10, 40, and 160 mg/kg of body weight. Following thigh infection, the mice were treated with 2-fold-increasing doses of antofloxacin from 2.5 to 80 mg/kg administered every 12 h. Efficacy was assessed by quantitative determination of the bacterial burdens in thigh homogenates and was compared with the bioluminescent density. Antofloxacin demonstrated both static and killing endpoints in relation to the initial burden against all study strains. The PK/PD index area under the concentration-time curve (AUC)/MIC correlated well with efficacy (R 2 = 0.92), and the dose-response relationship was relatively steep, as observed with escalating doses of antofloxacin. The mean free drug AUC/MIC targets necessary to produce net bacterial stasis and 1-log10 and 2-log10 kill for each isolate were 38.7, 66.1, and 147.0 h, respectively. In vivo bioluminescent imaging showed a rapid decrease in the bioluminescent density at free drug AUC/MIC exposures that exceeded the stasis targets. The integration of these PD targets combined with the results of PK studies with humans will be useful in setting optimal dosing regimens for the treatment of urinary tract infections due to E. coli.


mBio ◽  
2014 ◽  
Vol 5 (4) ◽  
Author(s):  
Piotr Bielecki ◽  
Uthayakumar Muthukumarasamy ◽  
Denitsa Eckweiler ◽  
Agata Bielecka ◽  
Sarah Pohl ◽  
...  

ABSTRACTmRNA profiling of pathogens during the course of human infections gives detailed information on the expression levels of relevant genes that drive pathogenicity and adaptation and at the same time allows for the delineation of phylogenetic relatedness of pathogens that cause specific diseases. In this study, we used mRNA sequencing to acquire information on the expression ofEscherichia colipathogenicity genes during urinary tract infections (UTI) in humans and to assign the UTI-associatedE. coliisolates to different phylogenetic groups. Whereas thein vivogene expression profiles of the majority of genes were conserved among 21E. colistrains in the urine of elderly patients suffering from an acute UTI, the specific gene expression profiles of the flexible genomes was diverse and reflected phylogenetic relationships. Furthermore, genes transcribedin vivorelative to laboratory media included well-described virulence factors, small regulatory RNAs, as well as genes not previously linked to bacterial virulence. Knowledge on relevant transcriptional responses that drive pathogenicity and adaptation of isolates to the human host might lead to the introduction of a virulence typing strategy into clinical microbiology, potentially facilitating management and prevention of the disease.IMPORTANCEUrinary tract infections (UTI) are very common; at least half of all women experience UTI, most of which are caused by pathogenicEscherichia colistrains. In this study, we applied massive parallel cDNA sequencing (RNA-seq) to provide unbiased, deep, and accurate insight into the nature and the dimension of the uropathogenicE. coligene expression profile during an acute UTI within the human host. This work was undertaken to identify key players in physiological adaptation processes and, hence, potential targets for new infection prevention and therapy interventions specifically aimed at sabotaging bacterial adaptation to the human host.


1991 ◽  
Vol 174 (5) ◽  
pp. 1167-1177 ◽  
Author(s):  
J Vuopio-Varkila ◽  
G K Schoolnik

Enteropathogenic Escherichia coli grow as discrete colonies on the mucous membranes of the small intestine. A similar pattern can be demonstrated in vitro; termed localized adherence (LA), it is characterized by the presence of circumscribed clusters of bacteria attached to the surfaces of cultured epithelial cells. The LA phenotype was studied using B171, an O111:NM enteropathogenic E. coli (EPEC) strain, and HEp-2 cell monolayers. LA could be detected 30-60 min after exposure of HEp-2 cells to B171. However, bacteria transferred from infected HEp-2 cells to fresh monolayers exhibited LA within 15 min, indicating that LA is an inducible phenotype. Induction of the LA phenotype was found to be associated with de novo protein synthesis and changes in the outer membrane proteins, including the production of a new 18.5-kD polypeptide. A partial NH2-terminal amino acid sequence of this polypeptide was obtained and showed it to be identical through residue 12 to the recently described bundle-forming pilus subunit of EPEC. Expression of the 18.5-kD polypeptide required the 57-megadalton enteropathogenic E. coli adherence plasmid previously shown to be required for the LA phenotype in vitro and full virulence in vivo. This observation, the correspondence of the 18.5-kD polypeptide to an EPEC-specific pilus protein, and the temporal correlation of its expression with the development of the LA phenotype suggest that it may contribute to the EPEC colonial mode of growth.


2014 ◽  
Vol 82 (4) ◽  
pp. 1572-1578 ◽  
Author(s):  
Karen L. Nielsen ◽  
Pia Dynesen ◽  
Preben Larsen ◽  
Lotte Jakobsen ◽  
Paal S. Andersen ◽  
...  

ABSTRACTCathelicidin (LL-37) and human β-defensin 1 (hBD-1) are important components of the innate defense in the urinary tract. The aim of this study was to characterize whether these peptides are important for developing uncomplicatedEscherichia coliurinary tract infections (UTIs). This was investigated by comparing urinary peptide levels of UTI patients during and after infection to those of controls, as well as characterizing the fecal flora of participants with respect to susceptibility to LL-37 andin vivovirulence. Forty-seven UTI patients and 50 controls who had never had a UTI were included. Participants were otherwise healthy, premenopausal, adult women. LL-37 MIC levels were compared for fecalE. coliclones from patients and controls and were also compared based on phylotypes (A, B1, B2, and D).In vivovirulence was investigated in the murine UTI model by use of selected fecal isolates from patients and controls. On average, UTI patients had significantly more LL-37 in urine during infection than postinfection, and patient LL-37 levels postinfection were significantly lower than those of controls. hBD-1 showed similar urine levels for UTI patients and controls. FecalE. coliisolates from controls had higher LL-37 susceptibility than fecal and UTIE. coliisolates from UTI patients.In vivostudies showed a high level of virulence of fecalE. coliisolates from both patients and controls and showed no difference in virulence correlated with the LL-37 MIC level. The results indicate that the concentration of LL-37 in the urinary tract and low susceptibility to LL-37 may increase the likelihood of UTI in a complex interplay between host and pathogen attributes.


mBio ◽  
2020 ◽  
Vol 11 (6) ◽  
Author(s):  
Yutao Liu ◽  
Runhua Han ◽  
Junyue Wang ◽  
Pan Yang ◽  
Fang Wang ◽  
...  

ABSTRACT The large intestinal pathogen enterohemorrhagic Escherichia coli (EHEC) O157:H7 detects host cues to regulate virulence gene expression during colonization and infection. However, virulence regulatory mechanisms of EHEC O157:H7 in the human large intestine are not fully understood. Herein, we identified a virulence-regulating pathway where the PhoQ/PhoP two-component regulatory system senses low magnesium levels and signals to the O island 119-encoded Z4267 (LmiA; low magnesium-induced regulator A), directly activating loci of enterocyte effacement genes to promote EHEC O157:H7 adherence in the large intestine. Disruption of this pathway significantly decreased EHEC O157:H7 adherence in the mouse intestinal tract. Moreover, feeding mice a magnesium-rich diet significantly reduced EHEC O157:H7 adherence in vivo. This LmiA-mediated virulence regulatory pathway is also conserved among several EHEC and enteropathogenic E. coli serotypes; therefore, our findings support the use of magnesium as a dietary supplement and provide greater insights into the dietary cues that can prevent enteric infections. IMPORTANCE Sensing specific gut metabolites is an important strategy for inducing crucial virulence programs by enterohemorrhagic Escherichia coli (EHEC) O157:H7 during colonization and infection. Here, we identified a virulence-regulating pathway wherein the PhoQ/PhoP two-component regulatory system signals to the O island 119-encoded low magnesium-induced regulator A (LmiA), which, in turn, activates locus of enterocyte effacement (LEE) genes to promote EHEC O157:H7 adherence in the low-magnesium conditions of the large intestine. This regulatory pathway is widely present in a range of EHEC and enteropathogenic E. coli (EPEC) serotypes. Disruption of this pathway significantly decreased EHEC O157:H7 adherence in the mouse intestinal tract. Moreover, mice fed a magnesium-rich diet showed significantly reduced EHEC O157:H7 adherence in vivo, indicating that magnesium may help in preventing EHEC and EPEC infection in humans.


2014 ◽  
Vol 82 (5) ◽  
pp. 1801-1812 ◽  
Author(s):  
Sylvia Kleta ◽  
Marcel Nordhoff ◽  
Karsten Tedin ◽  
Lothar H. Wieler ◽  
Rafal Kolenda ◽  
...  

ABSTRACTEnteropathogenicEscherichia coli(EPEC) is recognized as an important intestinal pathogen that frequently causes acute and persistent diarrhea in humans and animals. The use of probiotic bacteria to prevent diarrhea is gaining increasing interest. The probioticE. colistrain Nissle 1917 (EcN) is known to be effective in the treatment of several gastrointestinal disorders. While bothin vitroandin vivostudies have described strong inhibitory effects of EcN on enteropathogenic bacteria, including pathogenicE. coli, the underlying molecular mechanisms remain largely unknown. In this study, we examined the inhibitory effect of EcN on infections of porcine intestinal epithelial cells with atypical enteropathogenicE. coli(aEPEC) with respect to single infection steps, including adhesion, microcolony formation, and the attaching and effacing phenotype. We show that EcN drastically reduced the infection efficiencies of aEPEC by inhibiting bacterial adhesion and growth of microcolonies, but not the attaching and effacing of adherent bacteria. The inhibitory effect correlated with EcN adhesion capacities and was predominantly mediated by F1C fimbriae, but also by H1 flagella, which served as bridges between EcN cells. Furthermore, EcN seemed to interfere with the initial adhesion of aEPEC to host cells by secretion of inhibitory components. These components do not appear to be specific to EcN, but we propose that the strong adhesion capacities enable EcN to secrete sufficient local concentrations of the inhibitory factors. The results of this study are consistent with a mode of action whereby EcN inhibits secretion of virulence-associated proteins of EPEC, but not their expression.


2016 ◽  
Vol 198 (23) ◽  
pp. 3186-3199 ◽  
Author(s):  
Amit Pathania ◽  
Arvind Kumar Gupta ◽  
Swati Dubey ◽  
Balasubramanian Gopal ◽  
Abhijit A. Sardesai

ABSTRACTArgO and LysE are members of the LysE family of exporter proteins and ordinarily mediate the export ofl-arginine (Arg) inEscherichia coliandl-lysine (Lys) and Arg inCorynebacterium glutamicum, respectively. Under certain conditions, ArgO also mediates Lys export. To delineate the arrangement of ArgO in the cytoplasmic membrane ofE. coli, we have employed a combination of cysteine accessibilityin situ, alkaline phosphatase fusion reporters, and protein modeling to arrive at a topological model of ArgO. Our studies indicate that ArgO assumes an Nin-Coutconfiguration, potentially forming a five-transmembrane helix bundle flanked by a cytoplasmic N-terminal domain (NTD) comprising roughly its first 38 to 43 amino acyl residues and a short periplasmic C-terminal region (CTR). Mutagenesis studies indicate that the CTR, but not the NTD, is dispensable for ArgO functionin vivoand that a pair of conserved aspartate residues, located near the opposing edges of the cytoplasmic membrane, may play a pivotal role in facilitating transmembrane Arg flux. Additional studies on amino acid substitutions that impair ArgO functionin vivoand their derivatives bearing compensatory amino acid alterations indicate a role for intramolecular interactions in the Arg export mechanism, and some interactions are corroborated by normal-mode analyses. Lastly, our studies suggest that ArgO may exist as a monomerin vivo, thus highlighting the requirement for intramolecular interactions in ArgO, as opposed to interactions across multiple ArgO monomers, in the formation of an Arg-translocating conduit.IMPORTANCEThe orthologous proteins LysE ofC. glutamicumand ArgO ofE. colifunction as exporters of the basic amino acidsl-arginine andl-lysine and the basic amino acidl-arginine, respectively, and LysE can functionally substitute for ArgO when expressed inE. coli. Notwithstanding this functional equivalence, studies reported here show that ArgO possesses a membrane topology that is distinct from that reported for LysE, with substantial variation in the topological arrangement of the proximal one-third portions of the two exporters. Additional genetic andin silicostudies reveal the importance of (i) the cytoplasmic N-terminal domain, (ii) a pair of conserved aspartate residues, and (iii) potential intramolecular interactions in ArgO function and indicate that an Arg-translocating conduit is formed by a monomer of ArgO.


Sign in / Sign up

Export Citation Format

Share Document