scholarly journals AIM2-Like Receptors Positively and Negatively Regulate the Interferon Response Induced by Cytosolic DNA

mBio ◽  
2017 ◽  
Vol 8 (4) ◽  
Author(s):  
Yuki Nakaya ◽  
Jingtao Lilue ◽  
Spyridon Stavrou ◽  
Eileen A. Moran ◽  
Susan R. Ross

ABSTRACTCytosolic DNAs derived from retrotransposons serve as pathogen-associated molecular patterns for pattern recognition receptors (PRRs) that stimulate the induction of interferons (IFNs) and other cytokines, leading to autoimmune disease. Cyclic GMP-AMP synthase is one PRR that senses retrotransposon DNA, activating type I IFN responses through the stimulator of IFN genes (STING). Absent in melanoma 2 (AIM2)-like receptors (ALRs) have also been implicated in these pathways. Here we show that the mouse ALR IFI205 senses cytosolic retrotransposon DNA independently of cyclic GMP-AMP production. AIM2 antagonizes IFI205-mediated IFN induction activity by sequestering it from STING. We also found that the complement of genes located in the ALR locus in C57BL/6 and AIM2 knockout mice are different and unique, which has implications for interpretation of the sensing of pathogens in different mouse strains. Our data suggest that members of the ALR family are critical to the host IFN response to endogenous DNA.IMPORTANCEAutoimmune diseases like Aicardi-Goutières syndrome and lupus erythematosus arise when cells of the immune system become activated and attack host cells and tissues. We found that DNA generated by endogenous retroviruses and retroelements in inbred mice and mouse cells is recognized by several host proteins found in macrophages that are members of the ALR family and that these proteins both suppress and activate the pathways leading to the generation of cytokines and IFNs. We also show that there is great genetic diversity between different inbred mouse strains in the ALR genes, which might contribute to differential susceptibility to autoimmunity. Understanding how immune cells become activated is important to the control of disease.

Genetics ◽  
1981 ◽  
Vol 99 (2) ◽  
pp. 285-307
Author(s):  
R D McCall ◽  
D Frierson

ABSTRACT Most mammals tested, when exposed to increasing pressure in helium/oxygen atmospheres, exhibit progressive motor disturbances culminating in two, usually successive, well-differentiated convulsive seizures. The seizures are highly reproducible components of the constellation of events that collectively constitute the High Pressure Neurologic Syndrome (HPNS). In the present study, we present evidence that the mean difference in seizure threshold pressures of the first seizure to occur (HPNS Type I) between inbred mouse strains DBA/2J and C57BL/6J is predominantly determined (> 60%) by the expression of a major locus—possibly linked to the H-2 locus on chromosome 17—and a minor locus, probably unlinked. This outcome is derived from applications of the maximum likelihood modeling procedure of Elston and Stewart (1973) and Stewart and Elston (1973) to eleven models of genetic determinacy and tests (including breeding tests) of "preferred" models so derived using BXD recombinant inbred strains that show the following: The major locus exhibits conditional dominance characteristics depending upon compression rate and minor locus genotype. At a constant mean compression rate of 100 atm hr-1, the major locus manifests strong, though incomplete, dominance apparently independent of minor locus genotype. Its expression is, however, highly sensitive to compression rate, losing its dominance altogether at a linear rate of 1,000 atm hr-1. The major locus interacts with the weakly dominant and relatively compression-rate-insensitive minor locus to retain dominance at fast compression only when the dominant alleles of both loci are present. A principal finding of this study is that employing two compression rates permits fuller genetic characterization of murine high-pressure seizure susceptibility differences than could be achieved by use of a single compression rate.


1996 ◽  
Vol 26 (2) ◽  
pp. 149-160 ◽  
Author(s):  
J. K. Belknap ◽  
S. R. Mitchell ◽  
L. A. O'Toole ◽  
M. L. Helms ◽  
J. C. Crabbe

Biomedicines ◽  
2021 ◽  
Vol 10 (1) ◽  
pp. 33
Author(s):  
Hee Ra Jung ◽  
Seongman Jo ◽  
Min Jae Jeon ◽  
Hyelim Lee ◽  
Yeonjeong Chu ◽  
...  

In cancer immunotherapy, the cyclic GMP–AMP synthase–stimulator of interferon genes (STING) pathway is an attractive target for switching the tumor immunophenotype from ‘cold’ to ‘hot’ through the activation of the type I interferon response. To develop a new chemical entity for STING activator to improve cyclic GMP-AMP (cGAMP)-induced innate immune response, we identified KAS-08 via the structural modification of DW2282, which was previously reported as an anti-cancer agent with an unknown mechanism. Further investigation revealed that direct STING binding or the enhanced phosphorylation of STING and downstream effectors were responsible for DW2282-or KAS-08-mediated STING activity. Furthermore, KAS-08 was validated as an effective STING pathway activator in vitro and in vivo. The synergistic effect of cGAMP-mediated immunity and efficient anti-cancer effects successfully demonstrated the therapeutic potential of KAS-08 for combination therapy in cancer treatment.


Cells ◽  
2021 ◽  
Vol 10 (10) ◽  
pp. 2623
Author(s):  
Dana Zeid ◽  
Sean Mooney-Leber ◽  
Laurel R. Seemiller ◽  
Lisa R. Goldberg ◽  
Thomas J. Gould

Variants in a gene cluster upstream-adjacent to TERC on human chromosome 3, which includes genes APRM, LRRC31, LRRC34 and MYNN, have been associated with telomere length in several human populations. Currently, the mechanism by which variants in the TERC gene cluster influence telomere length in humans is unknown. Given the proximity between the TERC gene cluster and TERC (~0.05 Mb) in humans, it is speculated that cluster variants are in linkage disequilibrium with a TERC causal variant. In mice, the Terc gene/Terc gene cluster are also located on chromosome 3; however, the Terc gene cluster is located distantly downstream of Terc (~60 Mb). Here, we initially aim to investigate the interactions between genotype and nicotine exposure on absolute liver telomere length (aTL) in a panel of eight inbred mouse strains. Although we found no significant impact of nicotine on liver aTL, this first experiment identified candidate single nucleotide polymorphisms (SNPs) in the murine Terc gene cluster (within genes Lrrc31, Lrriq4 and Mynn) co-varying with aTL in our panel. In a second experiment, we tested the association of these Terc gene cluster variants with liver aTL in an independent panel of eight inbred mice selected based on candidate SNP genotype. This supported our initial finding that Terc gene cluster polymorphisms impact aTL in mice, consistent with data in human populations. This provides support for mice as a model for telomere dynamics, especially for studying mechanisms underlying the association between Terc cluster variants and telomere length. Finally, these data suggest that mechanisms independent of linkage disequilibrium between the Terc/TERC gene cluster and the Terc/TERC gene mediate the cluster’s regulation of telomere length.


2009 ◽  
Vol 206 (9) ◽  
pp. 1899-1911 ◽  
Author(s):  
Sarah M. McWhirter ◽  
Roman Barbalat ◽  
Kathryn M. Monroe ◽  
Mary F. Fontana ◽  
Mamoru Hyodo ◽  
...  

The innate immune system responds to unique molecular signatures that are widely conserved among microbes but that are not normally present in host cells. Compounds that stimulate innate immune pathways may be valuable in the design of novel adjuvants, vaccines, and other immunotherapeutics. The cyclic dinucleotide cyclic-di–guanosine monophosphate (c-di-GMP) is a recently appreciated second messenger that plays critical regulatory roles in many species of bacteria but is not produced by eukaryotic cells. In vivo and in vitro studies have previously suggested that c-di-GMP is a potent immunostimulatory compound recognized by mouse and human cells. We provide evidence that c-di-GMP is sensed in the cytosol of mammalian cells via a novel immunosurveillance pathway. The potency of cytosolic signaling induced by c-di-GMP is comparable to that induced by cytosolic delivery of DNA, and both nucleic acids induce a similar transcriptional profile, including triggering of type I interferons and coregulated genes via induction of TBK1, IRF3, nuclear factor κB, and MAP kinases. However, the cytosolic pathway that senses c-di-GMP appears to be distinct from all known nucleic acid–sensing pathways. Our results suggest a novel mechanism by which host cells can induce an inflammatory response to a widely produced bacterial ligand.


2001 ◽  
Vol 69 (1) ◽  
pp. 426-434 ◽  
Author(s):  
Neill A. Gingles ◽  
Janet E. Alexander ◽  
Aras Kadioglu ◽  
Peter W. Andrew ◽  
Alison Kerr ◽  
...  

ABSTRACT From a panel of nine inbred mice strains intranasally infected withStreptococcus pneumoniae type 2 strain, BALB/c mice were resistant and CBA/Ca and SJL mice were susceptible to infection. Further investigation revealed that BALB/c mice were able to prevent proliferation of pneumococci in the lungs and blood, whereas CBA/Ca mice showed no bacterial clearance. Rapidly increasing numbers of bacteria in the blood was a feature of CBA/Ca but not BALB/c mice. In the lungs, BALB/c mice recruited significantly more neutrophils than CBA/Ca mice at 12 and 24 h postinfection. Inflammatory lesions in BALB/c mice were visible much earlier than in CBA/Ca mice, and there was a greater cellular infiltration into the lung tissue of BALB/c mice at the earlier time points. Our data suggest that resistance or susceptibility to intranasal pneumococci may have an association with recruitment and/or function of neutrophils.


Blood ◽  
2020 ◽  
Vol 136 (25) ◽  
pp. 2933-2945
Author(s):  
Imene Melki ◽  
Isabelle Allaeys ◽  
Nicolas Tessandier ◽  
Benoit Mailhot ◽  
Nathalie Cloutier ◽  
...  

Abstract Systemic lupus erythematosus (SLE) is an autoimmune inflammatory disease characterized by deposits of immune complexes (ICs) in organs and tissues. The expression of FcγRIIA by human platelets, which is their unique receptor for immunoglobulin G antibodies, positions them to ideally respond to circulating ICs. Whereas chronic platelet activation and thrombosis are well-recognized features of human SLE, the exact mechanisms underlying platelet activation in SLE remain unknown. Here, we evaluated the involvement of FcγRIIA in the course of SLE and platelet activation. In patients with SLE, levels of ICs are associated with platelet activation. Because FcγRIIA is absent in mice, and murine platelets do not respond to ICs in any existing mouse model of SLE, we introduced the FcγRIIA (FCGR2A) transgene into the NZB/NZWF1 mouse model of SLE. In mice, FcγRIIA expression by bone marrow cells severely aggravated lupus nephritis and accelerated death. Lupus onset initiated major changes to the platelet transcriptome, both in FcγRIIA-expressing and nonexpressing mice, but enrichment for type I interferon response gene changes was specifically observed in the FcγRIIA mice. Moreover, circulating platelets were degranulated and were found to interact with neutrophils in FcγRIIA-expressing lupus mice. FcγRIIA expression in lupus mice also led to thrombosis in lungs and kidneys. The model recapitulates hallmarks of human SLE and can be used to identify contributions of different cellular lineages in the manifestations of SLE. The study further reveals a role for FcγRIIA in nephritis and in platelet activation in SLE.


2004 ◽  
Vol 72 (10) ◽  
pp. 5868-5876 ◽  
Author(s):  
Alaka Mullick ◽  
Miria Elias ◽  
Serge Picard ◽  
Lucie Bourget ◽  
Orce Jovcevski ◽  
...  

ABSTRACT Experimental infection of inbred mouse strains with Candida albicans provides a good model system to identify host genetic determinants that regulate onset of, response to, and ultimate outcome of disseminated candidiasis. The A/J mouse strain is exquisitely sensitive to infection with C. albicans, while the C57BL/6J strain is relatively resistant, as measured by survival following intravenous injection of Candida blastospores. This differential susceptibility is caused by an A/J-specific loss-of-function mutation in the C5 component of the complement pathway. C5 plays several critical roles in host response to infection, including target lysis and phagocyte recruitment. Therefore, to determine which of its functions were required for host resistance to candidiasis, a detailed comparative analysis of pathophysiology and host response to acute C. albicans infection was conducted in A/J and C57BL/6J mice. C5-sufficient C57BL/6J mice were found to succumb late in infection due to severe kidney pathology, typified by fungal replication and robust neutrophil-based inflammatory response associated with extensive tissue damage. In contrast, A/J mice were moribund within 24 h postinfection but displayed little if any kidney damage despite an inability to mobilize granulocytes and a high fungal load in the kidney. Rather, C5 deficiency in A/J mice was associated with higher levels of circulating cytokines tumor necrosis factor alpha, interleukin-6, monocyte chemotactic protein 1 (MCP-1), MCP-5, and eotaxin in response to C. albicans. Transfer of the C5-defective allele from A/J onto a C57BL/6J genetic background in recombinant congenic strain BcA17 recapitulated the phenotypic aspects of the susceptibility of A/J mice to C. albicans, confirming the causative role of C5 deficiency in the dysregulated cytokine response.


2021 ◽  
Author(s):  
Marilyn E Allen ◽  
Amit Golding ◽  
Violeta Rus ◽  
Nicholas B Karabin ◽  
Sophia Li ◽  
...  

Systemic lupus erythematosus (SLE) causes damaging inflammation in multiple organs via the accumulation of immune complexes. These complexes activate plasmacytoid DCs (pDCs) via TLR7 and TLR9, contributing to disease pathogenesis by driving secretion of inflammatory type I IFNs. Antimalarial drugs, such as chloroquine (CQ), are TLR antagonists used to alleviate inflammation in SLE. However, they require ~3 months of continuous use before achieving therapeutic efficacy and can accumulate in the retinal pigment epithelium with chronic use resulting in retinopathy. We hypothesized that poly(ethylene glycol)-b-poly(propylene sulfide) (PEG-b-PPS) filamentous nanocarriers, filomicelles (FMs) could improve drug activity and reduce toxicity by directly delivering CQ to pDCs via passive, morphology-based targeting. Healthy human PBMCs were treated with soluble CQ or CQ-loaded FMs, stimulated with TLR agonists or SLE patient sera, and type I IFN secretion was quantified via multi-subtype IFN-α ELISA and MX1 gene expression using real-time RT-qPCR. Our results showed that 50 µg CQ/mg FM decreased MX1 expression and IFN-α production after TLR activation with either synthetic nucleic acid agonists or immune complex rich sera from SLE patients. Cellular uptake and biodistribution studies showed that FMs preferentially accumulate in human pDCs in vitro and in tissues frequently damaged in SLE patients (i.e., liver and kidneys) while sparing the eye in vivo. These results showed that nanocarrier morphology enables drug delivery, and CQ-FMs may be equally effective and more targeted than soluble CQ at inhibiting SLE-relevant pathways.


Sign in / Sign up

Export Citation Format

Share Document