scholarly journals Gene Loss and Error-Prone RNA Editing in the Mitochondrion of Perkinsela, an Endosymbiotic Kinetoplastid

mBio ◽  
2015 ◽  
Vol 6 (6) ◽  
Author(s):  
Vojtěch David ◽  
Pavel Flegontov ◽  
Evgeny Gerasimov ◽  
Goro Tanifuji ◽  
Hassan Hashimi ◽  
...  

ABSTRACT Perkinsela is an enigmatic early-branching kinetoplastid protist that lives as an obligate endosymbiont inside Paramoeba (Amoebozoa). We have sequenced the highly reduced mitochondrial genome of Perkinsela, which possesses only six protein-coding genes (cox1, cox2, cox3, cob, atp6, and rps12), despite the fact that the organelle itself contains more DNA than is present in either the host or endosymbiont nuclear genomes. An in silico analysis of two Perkinsela strains showed that mitochondrial RNA editing and processing machineries typical of kinetoplastid flagellates are generally conserved, and all mitochondrial transcripts undergo U-insertion/deletion editing. Canonical kinetoplastid mitochondrial ribosomes are also present. We have developed software tools for accurate and exhaustive mapping of transcriptome sequencing (RNA-seq) reads with extensive U-insertions/deletions, which allows detailed investigation of RNA editing via deep sequencing. With these methods, we show that up to 50% of reads for a given edited region contain errors of the editing system or, less likely, correspond to alternatively edited transcripts. IMPORTANCE Uridine insertion/deletion-type RNA editing, which occurs in the mitochondrion of kinetoplastid protists, has been well-studied in the model parasite genera Trypanosoma, Leishmania, and Crithidia. Perkinsela provides a unique opportunity to broaden our knowledge of RNA editing machinery from an evolutionary perspective, as it represents the earliest kinetoplastid branch and is an obligatory endosymbiont with extensive reductive trends. Interestingly, up to 50% of mitochondrial transcripts in Perkinsela contain errors. Our study was complemented by use of newly developed software designed for accurate mapping of extensively edited RNA-seq reads obtained by deep sequencing.

2020 ◽  
Vol 2020 ◽  
pp. 1-16
Author(s):  
Javad Behroozi ◽  
Shirin Shahbazi ◽  
Mohammad Reza Bakhtiarizadeh ◽  
Habibollah Mahmoodzadeh

RNA editing is a posttranscriptional nucleotide modification in humans. Of the various types of RNA editing, the adenosine to inosine substitution is the most widespread in higher eukaryotes, which is mediated by the ADAR family enzymes. Inosine is recognized by the biological machinery as guanosine; therefore, editing could have substantial functional effects throughout the genome. RNA editing could contribute to cancer either by exclusive editing of tumor suppressor/promoting genes or by introducing transcriptomic diversity to promote cancer progression. Here, we provided a comprehensive overview of the RNA editing sites in gastric adenocarcinoma and highlighted some of their possible contributions to gastric cancer. RNA-seq data corresponding to 8 gastric adenocarcinoma and their paired nontumor counterparts were retrieved from the GEO database. After preprocessing and variant calling steps, a stringent filtering pipeline was employed to distinguish potential RNA editing sites from SNPs. The identified potential editing sites were annotated and compared with those in the DARNED database. Totally, 12362 high-confidence adenosine to inosine RNA editing sites were detected across all samples. Of these, 12105 and 257 were known and novel editing events, respectively. These editing sites were unevenly distributed across genomic regions, and nearly half of them were located in 3 ′ UTR. Our results revealed that 4868 editing sites were common in both normal and cancer tissues. From the remaining sites, 3985 and 3509 were exclusive to normal and cancer tissues, respectively. Further analysis revealed a significant number of differentially edited events among these sites, which were located in protein coding genes and microRNAs. Given the distinct pattern of RNA editing in gastric adenocarcinoma and adjacent normal tissue, edited sites have the potential to serve as the diagnostic biomarkers and therapeutic targets in gastric cancer.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Mikhail Pomaznoy ◽  
Ashu Sethi ◽  
Jason Greenbaum ◽  
Bjoern Peters

Abstract RNA-seq methods are widely utilized for transcriptomic profiling of biological samples. However, there are known caveats of this technology which can skew the gene expression estimates. Specifically, if the library preparation protocol does not retain RNA strand information then some genes can be erroneously quantitated. Although strand-specific protocols have been established, a significant portion of RNA-seq data is generated in non-strand-specific manner. We used a comprehensive stranded RNA-seq dataset of 15 blood cell types to identify genes for which expression would be erroneously estimated if strand information was not available. We found that about 10% of all genes and 2.5% of protein coding genes have a two-fold or higher difference in estimated expression when strand information of the reads was ignored. We used parameters of read alignments of these genes to construct a machine learning model that can identify which genes in an unstranded dataset might have incorrect expression estimates and which ones do not. We also show that differential expression analysis of genes with biased expression estimates in unstranded read data can be recovered by limiting the reads considered to those which span exonic boundaries. The resulting approach is implemented as a package available at https://github.com/mikpom/uslcount.


2020 ◽  
Vol 21 (24) ◽  
pp. 9378
Author(s):  
Yuzhe Sun ◽  
Min Xie ◽  
Zhou Xu ◽  
Koon Chuen Chan ◽  
Jia Yi Zhong ◽  
...  

Nitrogen fixation in soybean consumes a tremendous amount of energy, leading to substantial differences in energy metabolism and mitochondrial activities between nodules and uninoculated roots. While C-to-U RNA editing and intron splicing of mitochondrial transcripts are common in plant species, their roles in relation to nodule functions are still elusive. In this study, we performed RNA-seq to compare transcript profiles and RNA editing of mitochondrial genes in soybean nodules and roots. A total of 631 RNA editing sites were identified on mitochondrial transcripts, with 12% or 74 sites differentially edited among the transcripts isolated from nodules, stripped roots, and uninoculated roots. Eight out of these 74 differentially edited sites are located on the matR transcript, of which the degrees of RNA editing were the highest in the nodule sample. The degree of mitochondrial intron splicing was also examined. The splicing efficiencies of several introns in nodules and stripped roots were higher than in uninoculated roots. These include nad1 introns 2/3/4, nad4 intron 3, nad5 introns 2/3, cox2 intron 1, and ccmFc intron 1. A greater splicing efficiency of nad4 intron 1, a higher NAD4 protein abundance, and a reduction in supercomplex I + III2 were also observed in nodules, although the causal relationship between these observations requires further investigation.


1995 ◽  
Vol 15 (6) ◽  
pp. 2933-2941 ◽  
Author(s):  
L N Rusché ◽  
K J Piller ◽  
B Sollner-Webb

RNA editing in kinetoplast mitochondrial transcripts involves the insertion and/or deletion of uridine residues and is directed by guide RNAs (gRNAs). It is thought to occur through a chimeric intermediate in which the 3' oligo(U) tail of the gRNA is covalently joined to the 3' portion of the mRNA at the site being edited. Chimeras have been proposed to be formed by a transesterification reaction but could also be formed by the known mitochondrial site-specific nuclease and RNA ligase. To distinguish between these models, we studied chimera formation in vitro directed by a trypanosome mitochondrial extract. This reaction was found to occur in two steps. First, the mRNA is cleaved in the 3' portion of the editing domain, and then the 3' fragment derived from this cleavage is ligated to the gRNA. The isolated mRNA 3' cleavage product is a more efficient substrate for chimera formation than is the intact mRNA, inconsistent with a transesterification mechanism but supporting a nuclease-ligase mechanism. Also, when normal mRNA cleavage is inhibited by the presence of a phosphorothioate, normal chimera formation no longer occurs. Rather, this phosphorothioate induces both cleavage and chimera formation at a novel site within the editing domain. Finally, levels of chimera-forming activity correlate with levels of mitochondrial RNA ligase activity when reactions are conducted under conditions which inhibit the ligase, including the lack of ATP containing a cleavable alpha-beta bond. These data show that chimera formation in the mitochondrial extract occurs by a nuclease-ligase mechanism rather than by transesterification.


2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Lars Gabriel ◽  
Katharina J. Hoff ◽  
Tomáš Brůna ◽  
Mark Borodovsky ◽  
Mario Stanke

Abstract Background BRAKER is a suite of automatic pipelines, BRAKER1 and BRAKER2, for the accurate annotation of protein-coding genes in eukaryotic genomes. Each pipeline trains statistical models of protein-coding genes based on provided evidence and, then predicts protein-coding genes in genomic sequences using both the extrinsic evidence and statistical models. For training and prediction, BRAKER1 and BRAKER2 incorporate complementary extrinsic evidence: BRAKER1 uses only RNA-seq data while BRAKER2 uses only a database of cross-species proteins. The BRAKER suite has so far not been able to reliably exceed the accuracy of BRAKER1 and BRAKER2 when incorporating both types of evidence simultaneously. Currently, for a novel genome project where both RNA-seq and protein data are available, the best option is to run both pipelines independently, and to pick one, likely better output. Therefore, one or another type of the extrinsic evidence would remain unexploited. Results We present TSEBRA, a software that selects gene predictions (transcripts) from the sets generated by BRAKER1 and BRAKER2. TSEBRA uses a set of rules to compare scores of overlapping transcripts based on their support by RNA-seq and homologous protein evidence. We show in computational experiments on genomes of 11 species that TSEBRA achieves higher accuracy than either BRAKER1 or BRAKER2 running alone and that TSEBRA compares favorably with the combiner tool EVidenceModeler. Conclusion TSEBRA is an easy-to-use and fast software tool. It can be used in concert with the BRAKER pipeline to generate a gene prediction set supported by both RNA-seq and homologous protein evidence.


Blood ◽  
2016 ◽  
Vol 128 (22) ◽  
pp. 2705-2705 ◽  
Author(s):  
Lara Rizzotto ◽  
Arianna Bottoni ◽  
Tzung-Huei Lai ◽  
Chaomei Liu ◽  
Pearlly S Yan ◽  
...  

Abstract Chronic lymphocytic leukemia (CLL) follows a variable clinical course mostly dependent upon genomic factors, with a subset of patients having low risk disease and others displaying rapid progression associated with clonal evolution. Epigenetic mechanisms such as DNA promoter hypermethylation were shown to have a role in CLL evolution where the acquisition of increasingly heterogeneous DNA methylation patters occurred in conjunction with clonal evolution of genetic aberrations and was associated with disease progression. However the role of epigenetic mechanisms regulated by the histone deacetylase group of transcriptional repressors in the progression of CLL has not been well characterized. The histone deacetylases (HDACs) 1 and 2 are recruited onto gene promoters and form a complex with the histone demethylase KDM1. Once recruited, the complex mediate the removal of acetyl groups from specific lysines on histones (H3K9 and H3K14) thus triggering the demethylation of lysine 4 (H3K4me3) and the silencing of gene expression. CLL is characterized by the dysregulation of numerous coding and non coding genes, many of which have key roles in regulating the survival or progression of CLL. For instance, our group showed that the levels of HDAC1 were elevated in high risk as compared to low risk CLL or normal lymphocytes and this over-expression was responsible for the silencing of miR-106b, mR-15, miR-16, and miR-29b which affected CLL survival by modulating the expression of key anti-apoptotic proteins Bcl-2 and Mcl-1. To characterize the HDAC-repressed gene signature in high risk CLL, we conducted chromatin immunoprecipitation (ChIP) of the nuclear lysates from 3 high risk and 3 low risk CLL patients using antibodies against HDAC1, HDAC2 and KDM1 or non-specific IgG, sequenced and aligned the eluted DNA to a reference genome and determined the binding of HDAC1, HDAC2 and KDM1 at the promoters for all protein coding and microRNA genes. Preliminary results from this ChIP-seq showed a strong recruitment of HDAC1, HDAC2 and KDM1 to the promoters of several microRNA as well as protein coding genes in high risk CLL. To further corroborate these data we performed ChIP-Seq in the same 6 CLL samples to analyze the levels of H3K4me2 and H3K4me3 around gene promoters before and after 6h exposure to the HDACi panobinostat. Our goal was to demonstrate that HDAC inhibition elicited an increase in the levels of acetylation on histones and triggered the accrual of H3K4me2 at the repressed promoter, events likely to facilitate the recruitment of RNA polymerase II to this promoter. Initial analysis confirmed a robust accumulation of H3K4me2 and H3K4me3 marks at the gene promoters of representative genes that recruited HDAC1 and its co-repressors in the previous ChIP-Seq analysis in high risk CLL patients. Finally, 5 aggressive CLL samples were treated with the HDACi abexinostat for 48h and RNA before and after treatment was subjected to RNA-seq for small and large RNA to confirm that the regions of chromatin uncoiled by HDACi treatment were actively transcribed. HDAC inhibition induced the expression of a large number of miRNA genes as well as key protein coding genes, such as miR-29b, miR-210, miR-182, miR-183, miR-95, miR-940, FOXO3, EBF1 and BCL2L11. Of note, some of the predicted or validated targets of the induced miRNAs were key facilitators in the progression of CLL, such as BTK, SYK, MCL-1, BCL-2, TCL1, and ROR1. Moreover, RNA-seq showed that the expression of these protein coding genes was reduced by 2-33 folds upon HDAC inhibition. We plan to extend the RNA-seq to 5 CLL samples with indolent disease and combine all the data to identify a common signature of protein coding and miRNA genes that recruited the HDAC1 complex, accumulated activating histone modifications upon treatment with HDACi and altered gene and miRNA expression after HDAC inhibition in high risk CLL versus low risk CLL. The signature will be than validated on a large cohort of indolent and aggressive CLL patients. Our final goal is to define a signature of coding and non coding genes silenced by HDACs in high risk CLL and its role in facilitating disease progression. Disclosures Woyach: Acerta: Research Funding; Karyopharm: Research Funding; Morphosys: Research Funding.


2019 ◽  
Vol 47 (20) ◽  
pp. 10543-10552 ◽  
Author(s):  
Alexander Donath ◽  
Frank Jühling ◽  
Marwa Al-Arab ◽  
Stephan H Bernhart ◽  
Franziska Reinhardt ◽  
...  

Abstract With the rapid increase of sequenced metazoan mitochondrial genomes, a detailed manual annotation is becoming more and more infeasible. While it is easy to identify the approximate location of protein-coding genes within mitogenomes, the peculiar processing of mitochondrial transcripts, however, makes the determination of precise gene boundaries a surprisingly difficult problem. We have analyzed the properties of annotated start and stop codon positions in detail, and use the inferred patterns to devise a new method for predicting gene boundaries in de novo annotations. Our method benefits from empirically observed prevalances of start/stop codons and gene lengths, and considers the dependence of these features on variations of genetic codes. Albeit not being perfect, our new approach yields a drastic improvement in the accuracy of gene boundaries and upgrades the mitochondrial genome annotation server MITOS to an even more sophisticated tool for fully automatic annotation of metazoan mitochondrial genomes.


Blood ◽  
2012 ◽  
Vol 120 (21) ◽  
pp. 3298-3298 ◽  
Author(s):  
Eric R. Londin ◽  
Eleftheria Hatzimichael ◽  
Phillipe Loher ◽  
Yue Zhao ◽  
Yi Jing ◽  
...  

Abstract Abstract 3298 The anucleate platelets play a critical role in the formation of thrombi and prevention of bleeding. While the repertoire of platelet transcripts is a reflection of the megakaryocyte at the time of platelet differentiation, post-transcriptional events are known to occur. Furthermore, a strong correlation between the expressed mRNAs and proteome has been identified. Having a complete understanding of the platelet transcriptome is important for generating insights into the genetic basis of platelet disease traits. To capture the complexity of the platelet transcriptome, we performed RNA sequencing (RNA-seq) in leukocyte-depleted platelets from 10 males, with median age of 24.5 yrs and unremarkable medical history. Their short and long RNA platelet transcriptomes were analyzed on the SOLiD 5500xl sequencing platform. We generated ∼3.5 billion sequence reads ∼40% of which could be mapped uniquely to the human genome. Our analysis revealed that ∼9,000 distinct protein-coding mRNAs and ∼800 microRNAs (miRNAs) were present in the transcriptome of each of the 10 sequenced individuals. Comparison of the levels of mRNA expression across the 10 individuals showed an exceptional level of consistency with pair-wise Pearson correlation values ≥0.98. The miRNA expression profiles across the 10 individuals showed a similar consistency with pair-wise Pearson correlation values ≥0.98. Surprisingly, we found that these mRNAs and miRNAs accounted for a little over 1/2 of all of the uniquely mapped sequence reads suggesting the abundant presence of additional non-protein coding RNA (ncRNA) transcripts. Using the annotated entries of the latest release of the ENSEMBL database, we investigated the genetic make-up of these other transcripts. We found that ∼25% of each individual's uniquely mapped reads corresponded to non-protein coding transcripts from mRNA-coding loci. These reads accounted for more than 10,000 distinct such transcripts. In addition, each of the individuals in our cohort expressed an average of ∼1,500 pseudogenes and ∼200 long intergenic non-coding RNAs (lincRNAs). The short RNA profiles of the ten individuals revealed an abundance of diverse categories of ncRNAs including the signal recognition particle RNA (srpRNA), small nuclear RNA (snRNA) and small cytoplasmic RNAs (scRNA). These ncRNAs are involved in the processing of pre-mRNAs and their presence and prevalence in the anucleate platetet suggests the existence of a complex network of mRNA processing that persists after the megakaryocyte fragmentation. We also investigated the RNA-omes of the ten individuals for evidence of transcription of the pyknon category of ncRNAs. Pyknons are of particular interest because each has numerous intergenic and intronic copies whereas nearly all known human protein-coding genes contain one or more pyknons in their mRNA. Recent experimental work has shown that intergenic instances of the pyknons are transcribed in a tissue- and cell-state specific manner. An average of ∼100,000 pyknons are transcribed in each of the 10 sequenced individuals suggesting the possibility of a far-reaching network of interactions that link exonic space to distant non-exonic regions and are active in platelets. Lastly, we found that a large variety of distinct repeat element categories are expressed in the RNA-omes (both short and long) of these individuals. Among the most abundantly represented categories of repeat elements were DNA transposons, long terminal repeat (LTR) retrotransposons, and non-LTR retrotransposons such as long interspersed elements (LINEs) and short interspersed elements (SINEs). In summary, our RNA-seq analyses have revealed a spectrum of platelet transcripts that transcends protein-coding genes and miRNAs. Indeed, the transcripts that have their source in genomic features not previously discussed or analyzed in the platelet context represent a very significant portion of all platelet transcripts. This in turn suggests an unanticipated richness, and presumably commensurate complexity, for the platelet transcriptome. While the role of these novel non-protein coding RNAs is currently unknown it is expected that at least some of them may be of functional significance which will in turn permit a better understanding of the molecular mechanisms that regulate platelet physiology and may contribute to processes beyond thrombosis and hemostasis. Disclosures: No relevant conflicts of interest to declare.


Sign in / Sign up

Export Citation Format

Share Document