scholarly journals Deep Sequencing Identifies Noncanonical Editing of Ebola and Marburg Virus RNAs in Infected Cells

mBio ◽  
2014 ◽  
Vol 5 (6) ◽  
Author(s):  
Reed S. Shabman ◽  
Omar J. Jabado ◽  
Chad E. Mire ◽  
Timothy B. Stockwell ◽  
Megan Edwards ◽  
...  

ABSTRACT Deep sequencing of RNAs produced by Zaire ebolavirus (EBOV) or the Angola strain of Marburgvirus (MARV-Ang) identified novel viral and cellular mechanisms that diversify the coding and noncoding sequences of viral mRNAs and genomic RNAs. We identified previously undescribed sites within the EBOV and MARV-Ang mRNAs where apparent cotranscriptional editing has resulted in the addition of non-template-encoded residues within the EBOV glycoprotein (GP) mRNA, the MARV-Ang nucleoprotein (NP) mRNA, and the MARV-Ang polymerase (L) mRNA, such that novel viral translation products could be produced. Further, we found that the well-characterized EBOV GP mRNA editing site is modified at a high frequency during viral genome RNA replication. Additionally, editing hot spots representing sites of apparent adenosine deaminase activity were found in the MARV-Ang NP 3′-untranslated region. These studies identify novel filovirus-host interactions and reveal production of a greater diversity of filoviral gene products than was previously appreciated. IMPORTANCE This study identifies novel mechanisms that alter the protein coding capacities of Ebola and Marburg virus mRNAs. Therefore, filovirus gene expression is more complex and diverse than previously recognized. These observations suggest new directions in understanding the regulation of filovirus gene expression.

2021 ◽  
Author(s):  
Beatriz Alvarado-Hernandez ◽  
Yanping Ma ◽  
Nishi R. Sharma ◽  
Vladimir Majerciak ◽  
Alexei Lobanov ◽  
...  

Kaposi’s sarcoma-associated herpesvirus (KSHV) ORF57 is an RNA-binding post-transcriptional regulator. We recently applied an affinity-purified anti-ORF57 antibody to conduct ORF57-CLIP (Cross-linking Immunoprecipitation) in combination with RNA-sequencing (CLIP-seq) and analyzed the genome-wide host RNA transcripts in association with ORF57 in BCBL-1 cells with lytic KSHV infection. Mapping of the CLIPed RNA reads to the human genome (GRCh37) revealed that most of the ORF57-associated RNA reads were from rRNAs. The remaining RNA reads mapped to several classes of host non-coding and protein-coding mRNAs. We found ORF57 binds and regulates expression of a subset of host lncRNAs, including LINC00324, LINC00355, and LINC00839 which are involved in cell growth. ORF57 binds snoRNAs responsible for 18S and 28S rRNA modifications, but does not interact with fibrillarin and NOP58. We validated ORF57 interactions with 67 snoRNAs by ORF57-RNA immunoprecipitation (RIP)-snoRNA-array assays. Most of the identified ORF57 rRNA binding sites (BS) overlap with the sites binding snoRNAs. We confirmed ORF57-snoRA71B RNA interaction in BCBL-1 cells by ORF57-RIP and Northern blot analyses using a 32 P-labeled oligo probe from the 18S rRNA region complementary to snoRA71B. Using RNA oligos from the rRNA regions that ORF57 binds for oligo pulldown-Western blot assays, we selectively verified ORF57 interactions with 5.8S and 18S rRNAs. Polysome profiling revealed that ORF57 associates with both monosomes and polysomes and its association with polysomes increases PABPC1 binding to, but prevent Ago2 from polysomes. Our data indicate a functional correlation with ORF57 binding and suppression of Ago2 activities for ORF57 promotion of gene expression. Significance As an RNA-binding protein, KSHV ORF57 regulates RNA splicing, stability, and translation and inhibits host innate immunity by blocking the formation of RNA granules in virus infected cells. In this report, ORF57 was found to interact many host non-coding RNAs, including lncRNAs, snoRNAs and ribosomal RNAs to carry out additional unknown functions. ORF57 binds a group of lncRNAs via the identified RNA motifs by ORF57 CLIP-seq to regulate their expression. ORF57 associates with snoRNAs independently of fibrillarin and NOP58 proteins, and with ribosomal RNA in the regions that commonly bind snoRNAs. Knockdown of fibrillarin expression decreases the expression of snoRNAs and CDK4, but not affect viral gene expression. More importantly, we found that ORF57 binds translationally active polysomes and enhances PABPC-1 but prevents Ago2 association with polysomes. Data provide a compelling evidence on how ORF57 in KSHV infected cells might regulate protein synthesis by blocking Ago2’s hostile activities on translation.


2020 ◽  
Author(s):  
Ping An ◽  
Paul G. Cantalupo ◽  
Wenshan Zheng ◽  
Maria Teresa Sáenz-Robles ◽  
Alexis M. Duray ◽  
...  

BKV is a human polyomavirus that is generally harmless but can cause devastating disease in immunosuppressed individuals. BKV infection of renal cells is a common problem for kidney transplant patients undergoing immunosuppressive therapy. In cultured primary human renal proximal tubule epithelial cells (RPTE), BKV undergoes a productive infection. The BKV-encoded large T antigen (LT) induces cell cycle entry, resulting in the upregulation of numerous genes associated with cell proliferation. Consistently, microarray and RNA-seq experiments performed in bulk infected cell populations identified several proliferation-related pathways that are upregulated by BKV. These studies revealed few genes that are downregulated. In this study, we analyzed viral and cellular transcripts in single mock or BKV-infected cells. We found that the levels of viral mRNAs vary widely among infected cells, resulting in different levels of LT and viral capsid protein expression. Cells expressing the highest levels of viral transcripts account for approximately 20% of the culture and have a gene expression pattern that is distinct from cells expressing lower levels of viral mRNAs. Surprisingly, cells expressing low levels of viral mRNA do not progress with time to high expression, suggesting that the two cellular responses are determined prior to or shortly following infection. Finally, comparison of cellular gene expression patterns of cells expressing high levels of viral mRNA with mock-infected cells, or with cells expressing low levels of viral mRNA, revealed previously unidentified pathways that are downregulated by BKV. Among these are pathways associated with drug metabolism and detoxification, TNF-signaling, energy metabolism, and translation. IMPORTANCE The outcome of viral infection is determined by the ability of the virus to redirect cellular systems towards progeny production countered by the ability of the cell to block these viral actions. Thus, an infected culture consists of thousands of cells, each fighting their own individual battle. Bulk measurements, such as PCR or RNA-seq, measure the average of these individual responses to infection. Single cell transcriptomics provides a window to the one-on-one battle between BKV and each cell. Our studies reveal that only a minority of infected cells are overwhelmed by the virus and produce large amounts of BKV mRNAs and proteins, while the infection appears to be restricted in the remaining cells. Correlation of viral transcript levels with cellular gene expression patterns reveals pathways manipulated by BKV that may play a role in limiting infection.


2021 ◽  
Author(s):  
Sudip Khadka ◽  
Caroline G. Williams ◽  
Joyce Sweeney-Gibbons ◽  
Christopher F. Basler

The filovirus family includes deadly pathogens such as Ebola virus (EBOV) and Marburg virus (MARV). A substantial portion of filovirus genomes encode 5’ and 3’ untranslated regions (UTRs) of viral mRNAs. Select viral genomic RNA sequences corresponding to 3’UTRs are prone to editing by ADAR1. A reporter mRNA approach, in which different 5’ or 3’UTRs were inserted into luciferase encoding mRNAs, demonstrates that MARV 3’UTRs yield different levels of reporter gene expression suggesting modulation of translation. The modulation occurs in cells unable to produce miRNAs and can be recapitulated in a MARV minigenome assay. Deletion mutants identified negative regulatory regions at end of the MARV NP and L 3’UTRs. Apparent ADAR1 editing mutants were previously identified within the MARV NP 3’UTR. Introduction of these changes into the MARV nucleoprotein (NP) 3’UTR or deletion of the region targeted for editing enhances translation, as indicated by reporter assays and polysome analysis. In addition, the parental NP 3’UTR, but not the edited or deletion mutant NP 3’UTRs, induce a type I interferon (IFN) response upon transfection into cells. Because some EBOV isolates from the West Africa outbreak exhibited ADAR1 editing of the VP40 3’UTR, VP40 3’UTRs with parental and edited sequences were similarly assayed. The EBOV VP40 3’UTR edits also enhanced translation but neither the wildtype nor the edited 3’UTRs induced IFN. These findings implicate filoviral mRNA 3’UTRs as negative regulators of translation that can be inactivated by innate immune responses that induce ADAR1. Importance UTRs comprise a large percentage of filovirus genomes and are apparent targets of editing by ADAR1, an enzyme with pro- and antiviral activities. However, the functional significance of the UTRs and of ADAR1 editing have been uncertain. This study demonstrates that MARV and EBOV 3’UTRs can modulate translation, in some cases negatively. ADAR1 editing or deletion of select regions within the translation suppressing 3’UTRs, relieves the negative effects of the UTRs. These data indicate that filovirus 3’UTRs contain translation regulatory elements that are modulated by activation of ADAR1, suggesting a complex interplay between filovirus gene expression and innate immunity.


2017 ◽  
Vol 4 (2) ◽  
Author(s):  
NEHA SINGH ◽  
INDERJEET BHOGAL ◽  
ABHISHEK KUMAR ◽  
PUNIT TYAGI ◽  
GIRIJA SIKARWAR ◽  
...  

Acclimatization is a process that occurs in individual cells to a drastic change in micro and macro environments. When an organism is subjected to a new environment or a change in its normal growing conditions, the cellular mechanisms initiate a warning sign and over a period of time or over generations the acquired, modified traits are being communicated and fixed as a new trait. If there is lack of equilibrium within the cell due to over expression of a single gene or network of associated genes either manmade or due to mutations, the organism or plant tries to fix it by initiating gene regulatory mechanisms. According to our neutral theory of gene expression, always a cell tries to maintain its pH by modifying its cytosol through altered gene expression. In the present investigation, 198 AtMYB genes were analyzed and found to play an intrinsic photosystem linked network of 38 nodes where MYB being regulated by a set of 48 miRNAs. Members of the network have evidence-based link to energy related mechanisms. Altering gene expression to an extent where, the cell may not be able to fix it or a trait, which requires excessive energy loss escorts the organism’s gene regulation by breakdown of the introduced sequence over few generations. Events with constitutive overexpression may suffer poor performance over the years based on gene network prevailing in the crop of interest. Hence, network rewiring with minimal energy expenses is concerned.


2021 ◽  
Vol 17 (1) ◽  
Author(s):  
Rodrigo Díaz ◽  
José Troncoso ◽  
Eva Jakob ◽  
Stanko Skugor

Abstract Background Vertebrate hosts limit the availability of iron to microbial pathogens in order to nutritionally starve the invaders. The impact of iron deficiency induced by the iron chelator deferoxamine mesylate (DFO) was investigated in Atlantic salmon SHK-1 cells infected with the facultative intracellular bacterium Piscirickettsia salmonis. Results Effects of the DFO treatment and P. salmonis on SHK-1 cells were gaged by assessing cytopathic effects, bacterial load and activity, and gene expression profiles of eight immune biomarkers at 4- and 7-days post infection (dpi) in the control group, groups receiving single treatments (DFO or P. salmonis) and their combination. The chelator appears to be well-tolerated by host cells, while it had a negative impact on the number of bacterial cells and associated cytotoxicity. DFO alone had minor effects on gene expression of SHK-1 cells, including an early activation of IL-1β at 4 dpi. In contrast to few moderate changes induced by single treatments (either infection or chelator), most genes had highest upregulation in the infected groups receiving DFO. The mildest induction of hepcidin-1 (antimicrobial peptide precursor and regulator of iron homeostasis) was observed in cells exposed to DFO alone, followed by P. salmonis infected cells while the addition of DFO to infected cells further increased the mRNA abundance of this gene. Transcripts encoding TNF-α (immune signaling) and iNOS (immune effector) showed sustained increase at both time points in this group while cathelicidin-1 (immune effector) and IL-8 (immune signaling) were upregulated at 7 dpi. The stimulation of protective gene responses seen in infected cultures supplemented with DFO coincided with the reduction of bacterial load and activity (judged by the expression of P. salmonis 16S rRNA), and damage to cultured host cells. Conclusion The absence of immune gene activation under normal iron conditions suggests modulation of host responses by P. salmonis. The negative effect of iron deficiency on bacteria likely allowed host cells to respond in a more protective manner to the infection, further decreasing its progression. Presented findings encourage in vivo exploration of iron chelators as a promising strategy against piscirickettsiosis.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Timo W. M. De Groof ◽  
Elizabeth G. Elder ◽  
Eleanor Y. Lim ◽  
Raimond Heukers ◽  
Nick D. Bergkamp ◽  
...  

AbstractLatent human cytomegalovirus (HCMV) infection is characterized by limited gene expression, making latent HCMV infections refractory to current treatments targeting viral replication. However, reactivation of latent HCMV in immunosuppressed solid organ and stem cell transplant patients often results in morbidity. Here, we report the killing of latently infected cells via a virus-specific nanobody (VUN100bv) that partially inhibits signaling of the viral receptor US28. VUN100bv reactivates immediate early gene expression in latently infected cells without inducing virus production. This allows recognition and killing of latently infected monocytes by autologous cytotoxic T lymphocytes from HCMV-seropositive individuals, which could serve as a therapy to reduce the HCMV latent reservoir of transplant patients.


2021 ◽  
Vol 7 (3) ◽  
pp. 42
Author(s):  
Victoria Mamontova ◽  
Barbara Trifault ◽  
Lea Boten ◽  
Kaspar Burger

Gene expression is an essential process for cellular growth, proliferation, and differentiation. The transcription of protein-coding genes and non-coding loci depends on RNA polymerases. Interestingly, numerous loci encode long non-coding (lnc)RNA transcripts that are transcribed by RNA polymerase II (RNAPII) and fine-tune the RNA metabolism. The nucleolus is a prime example of how different lncRNA species concomitantly regulate gene expression by facilitating the production and processing of ribosomal (r)RNA for ribosome biogenesis. Here, we summarise the current findings on how RNAPII influences nucleolar structure and function. We describe how RNAPII-dependent lncRNA can both promote nucleolar integrity and inhibit ribosomal (r)RNA synthesis by modulating the availability of rRNA synthesis factors in trans. Surprisingly, some lncRNA transcripts can directly originate from nucleolar loci and function in cis. The nucleolar intergenic spacer (IGS), for example, encodes nucleolar transcripts that counteract spurious rRNA synthesis in unperturbed cells. In response to DNA damage, RNAPII-dependent lncRNA originates directly at broken ribosomal (r)DNA loci and is processed into small ncRNA, possibly to modulate DNA repair. Thus, lncRNA-mediated regulation of nucleolar biology occurs by several modes of action and is more direct than anticipated, pointing to an intimate crosstalk of RNA metabolic events.


Sign in / Sign up

Export Citation Format

Share Document