scholarly journals Reduced Fitness Costs of mcr-1.2 Compared to Mutated pmrB in Isogenic Colistin-Resistant KPC-3-Producing Klebsiella pneumoniae

mSphere ◽  
2019 ◽  
Vol 4 (6) ◽  
Author(s):  
Cesira Giordano ◽  
Adrian Klak ◽  
Simona Barnini ◽  
Monika A. Chlebowicz ◽  
Mariacristina Menconi ◽  
...  

ABSTRACT In the present study, we provide the results of a detailed genomic analysis and the growth characteristics of a colistin-resistant KPC-3-producing Klebsiella pneumoniae sequence type 512 (ST512) isolate (the colR-KPC3-KP isolate) with a mutated pmrB and isogenic isolates of colR-KPC3-KP with mcr-1.2 isolated from an immunocompromised patient. From 2014 to 2017, four colR-KPC3-KP isolates were detected in rectal swab samples collected from a pediatric hematology patient at the Azienda Ospedaliero-Universitaria Pisana in Pisa, Italy. Whole-genome sequencing was performed by MiSeq sequencing (Illumina). Growth experiments were performed using different concentrations of colistin. The growth lag phases both of an isolate harboring a deletion in pmrB and of clonal variants with mcr-1.2 were assessed by the use of real-time light-scattering measurements. In the first isolate (isolate 1000-pmrBΔ, recovered in September 2014), a 17-nucleotide deletion in pmrB was detected. In subsequent isolates, the mcr-1.2 gene associated with the plasmid pIncX4-AOUP was found, while pmrB was intact. Additionally, plasmid pIncQ-AOUP, harboring aminoglycoside resistance genes, was detected. The growth curves of the first three isolates were identical without colistin exposure; however, at higher concentrations of colistin, the growth curves of the isolate with a deletion in pmrB showed longer lag phases. We observed the replacement of mutated colR-KPC3-KP pmrB by isogenic isolates with multiple resistance plasmids, including mcr-1.2-carrying pIncX4, probably due to coselection under gentamicin treatment in a patient with prolonged colR-KPC3-KP carriage. The carriage of these isolates persisted in follow-up cultures. Coselection and the advantages in growth characteristics suggest that the plasmid-mediated resistance conferred by mcr has fewer fitness costs in colR-KPC3-KP than mutations in chromosomal pmrB, contributing to the success of this highly resistant hospital-adapted epidemiological lineage. IMPORTANCE Our study shows a successful prolonged human colonization by a colistin-resistant Klebsiella pneumoniae isolate harboring mcr-1.2. An intense antibiotic therapy contributed to the maintenance of this microorganism through the acquisition of new resistance genes. The isolates carrying mcr-1.2 showed fewer fitness costs than isogenic isolates with a pmrB mutation in the chromosome. Coselection and reduced fitness costs may explain the replacement of isolates with the pmrB mutation by other isolates and the ability of the microorganism to persist despite antibiotic treatment.

2021 ◽  
Vol 12 ◽  
Author(s):  
Xueya Zhang ◽  
Qiaoling Li ◽  
Hailong Lin ◽  
Wangxiao Zhou ◽  
Changrui Qian ◽  
...  

Aminoglycosides are important options for treating life-threatening infections. However, high levels of aminoglycoside resistance (HLAR) among Klebsiella pneumoniae isolates have been observed to be increasing frequently. In this study, a total of 292 isolates of the K. pneumoniae complex from a teaching hospital in China were analyzed. Among these isolates, the percentage of HLAR strains was 13.7% (40/292), and 15 aminoglycoside resistance genes were identified among the HLAR strains, with rmtB being the most dominant resistance gene (70%, 28/40). We also described an armA-carrying Klebsiella variicola strain KP2757 that exhibited a high-level resistance to all aminoglycosides tested. Whole-genome sequencing of KP2757 demonstrated that the strain contained one chromosome and three plasmids, with all the aminoglycoside resistance genes (including two copies of armA and six AME genes) being located on a conjugative plasmid, p2757-346, belonging to type IncHI5. Comparative genomic analysis of eight IncHI5 plasmids showed that six of them carried two copies of the intact armA gene in the complete or truncated Tn1548 transposon. To the best of our knowledge, for the first time, we observed that two copies of armA together with six AME genes coexisted on the same plasmid in a strain of K. variicola with HLAR. Comparative genomic analysis of eight armA-carrying IncHI5 plasmids isolated from humans and sediment was performed, suggesting the potential for dissemination of these plasmids among bacteria from different sources. These results demonstrated the necessity of monitoring the prevalence of IncHI5 plasmids to restrict their worldwide dissemination.


2017 ◽  
Vol 61 (7) ◽  
Author(s):  
Weihua Huang ◽  
Guiqing Wang ◽  
Robert Sebra ◽  
Jian Zhuge ◽  
Changhong Yin ◽  
...  

ABSTRACT The extended-spectrum-β-lactamase (ESBL)- and Klebsiella pneumoniae carbapenemase (KPC)-producing Enterobacteriaceae represent serious and urgent threats to public health. In a retrospective study of multidrug-resistant K. pneumoniae, we identified three clinical isolates, CN1, CR14, and NY9, carrying both bla CTX-M and bla KPC genes. The complete genomes of these three K. pneumoniae isolates were de novo assembled by using both short- and long-read whole-genome sequencing. In CR14 and NY9, bla CTX-M and bla KPC were carried on two different plasmids. In contrast, CN1 had one copy of bla KPC-2 and three copies of bla CTX-M-15 integrated in the chromosome, for which the bla CTX-M-15 genes were linked to an insertion sequence, ISEcp1, whereas the bla KPC-2 gene was in the context of a Tn4401a transposition unit conjugated with a PsP3-like prophage. Intriguingly, downstream of the Tn4401a-bla KPC-2-prophage genomic island, CN1 also carried a clustered regularly interspaced short palindromic repeat (CRISPR)-cas array with four spacers targeting a variety of K. pneumoniae plasmids harboring antimicrobial resistance genes. Comparative genomic analysis revealed that there were two subtypes of type I-E CRISPR-cas in K. pneumoniae strains and suggested that the evolving CRISPR-cas, with its acquired novel spacer, induced the mobilization of antimicrobial resistance genes from plasmids into the chromosome. The integration and dissemination of multiple copies of bla CTX-M and bla KPC from plasmids to chromosome depicts the complex pandemic scenario of multidrug-resistant K. pneumoniae. Additionally, the implications from this study also raise concerns for the application of a CRISPR-cas strategy against antimicrobial resistance.


2017 ◽  
Vol 62 (2) ◽  
Author(s):  
Nadia Jaidane ◽  
Rémy A. Bonnin ◽  
Wejdene Mansour ◽  
Delphine Girlich ◽  
Elodie Creton ◽  
...  

ABSTRACT The emergence of colistin-resistant Klebsiella pneumoniae (CoRKp) is a public health concern, since this antibiotic has become the last line of treatment for infections caused by multidrug-resistant (MDR) Gram negatives. In this study, we have investigated the molecular basis of colistin resistance in 13 MDR K. pneumoniae strains isolated from 12 patients in a teaching hospital in Sousse, Tunisia. Whole-genome sequencing (WGS) was used to decipher the molecular mechanism of colistin resistance and to identify the resistome of these CoRKp isolates. It revealed a genome of ca. 5.5 Mbp in size with a G+C content of 57%, corresponding to that commonly observed for K. pneumoniae. These isolates belonged to the 5 different sequence types (ST11, ST15, ST101, ST147, and ST392), and their resistome was composed of acquired β-lactamases, including extended-spectrum beta-lactamase and carbapenemase genes (bla CTX-M-15, bla OXA-204, bla OXA-48, and bla NDM-1 genes), aminoglycoside resistance genes [aac(6′)Ib-cr, aph(3″)-Ib, aph(6)-Id, and aac(3)-IIa], and fosfomycin (fosA), fluoroquinolone (qnr-like), chloramphenicol, trimethoprim, and tetracycline resistance genes. All of the isolates were identified as having a mutated mgrB gene. Mapping reads with reference sequences of the most common genes involved in colistin resistance revealed several modifications in mgrB, pmr, and pho operons (deletions, insertions, and substitutions) likely affecting the function of these proteins. It is worth noting that among the 12 patients, 10 were treated with colistin before the isolation of CoRKp. No plasmid encoding mcr-1 to mcr-5 genes was found in these isolates. This study corresponds to the first molecular characterization of a collection of CoRKp strains in Tunisia and highlights that the small-transmembrane protein MgrB is a main mechanism for colistin resistance in K. pneumoniae.


2012 ◽  
Vol 56 (4) ◽  
pp. 2143-2145 ◽  
Author(s):  
Aurora García-Fernández ◽  
Laura Villa ◽  
Claudio Carta ◽  
Carolina Venditti ◽  
Alessandra Giordano ◽  
...  

ABSTRACTA carbapenemase-resistantKlebsiella pneumoniaestrain, clone ST258 producing KPC-3, was fully characterized. The entire plasmid content was investigated, thereby identifying plasmids of the IncFIIk(two of them similar to pKPQIL and pKPN3, respectively), IncX, and ColE types, carrying a formidable set of resistance genes against toxic compounds, metals, and antimicrobial drugs and a novel iron(III) uptake system.


Author(s):  
Behrouz Latifi ◽  
Saeed Tajbakhsh ◽  
Leila Ahadi ◽  
Forough Yousefi

Background and Objectives: Increasing the rate of extended-spectrum β-lactamase (ESBL)-producing Klebsiella pneumoniae has given rise to a major healthcare issue in clinical settings over the past few years. Treatment of these strains is hardly effective since the plasmid encoding ESBL may also carry other resistance genes including aminoglycosides. The current study aimed to evaluate the prevalence of ESBL-producing K. pneumoniae and investigate the coexistence of Cefoxitamase-Munich (bla ) with aminoglycoside-modifying enzyme (AME) genes, aac(3)IIa as well as aac(6′)Ib, in CTX‑M‑producing K. pneumoniae isolated from patients in Bushehr province, Iran. Materials and Methods: A total of 212 K. pneumoniae isolates were collected and confirmed using polymerase chain re‑ action (PCR) of the malate dehydrogenase gene. Isolates were screened for production of ESBL. Phenotypic confirmatory test was performed using combined disk test. The genes encoding CTX-M groups and AME genes, aac(3)IIa and aac(6′)Ib, were investigated by PCR. Results: The ESBL phenotype was detected in 56 (26.4%) K. pneumoniae isolates. Moreover, 83.9% of ESBL-producing isolates carried the genes for CTX-M type β-lactamases, which were distributed into the two genetic groups of CTX-M-1 (97.8%)- and CTX-M-2 (2.1%)-related enzymes. Notably, among K. pneumoniae isolates containing the blaCTX‑M gene, 68.08% of isolates harbored AME genes. In addition, the coexistence of bla in 46.8% of CTX-M-producing K. pneumoniae isolates. Conclusion: This study provides evidence of a high prevalence of AME genes in CTX-M- producing K. pneumoniae iso‑ lates; therefore, in the initial empirical treatment of infections caused by ESBL-KP in regions with such antibiotic resistance patterns, aminoglycoside combination therapy should be undertaken carefully.


2011 ◽  
Vol 55 (9) ◽  
pp. 4267-4276 ◽  
Author(s):  
Vinod Kumar ◽  
Peng Sun ◽  
Jessica Vamathevan ◽  
Yong Li ◽  
Karen Ingraham ◽  
...  

ABSTRACTThere is a global emergence of multidrug-resistant (MDR) strains ofKlebsiella pneumoniae, a Gram-negative enteric bacterium that causes nosocomial and urinary tract infections. While the epidemiology ofK. pneumoniaestrains and occurrences of specific antibiotic resistance genes, such as plasmid-borne extended-spectrum β-lactamases (ESBLs), have been extensively studied, only four complete genomes ofK. pneumoniaeare available. To better understand the multidrug resistance factors inK. pneumoniae, we determined by pyrosequencing the nearly complete genome DNA sequences of two strains with disparate antibiotic resistance profiles, broadly drug-susceptible strain JH1 and strain 1162281, which is resistant to multiple clinically used antibiotics, including extended-spectrum β-lactams, fluoroquinolones, aminoglycosides, trimethoprim, and sulfamethoxazoles. Comparative genomic analysis of JH1, 1162281, and other publishedK. pneumoniaegenomes revealed a core set of 3,631 conserved orthologous proteins, which were used for reconstruction of whole-genome phylogenetic trees. The close evolutionary relationship between JH1 and 1162281 relative to otherK. pneumoniaestrains suggests that a large component of the genetic and phenotypic diversity of clinical isolates is due to horizontal gene transfer. Using curated lists of over 400 antibiotic resistance genes, we identified all of the elements that differentiated the antibiotic profile of MDR strain 1162281 from that of susceptible strain JH1, such as the presence of additional efflux pumps, ESBLs, and multiple mechanisms of fluoroquinolone resistance. Our study adds new and significant DNA sequence data onK. pneumoniaestrains and demonstrates the value of whole-genome sequencing in characterizing multidrug resistance in clinical isolates.


2017 ◽  
Vol 61 (7) ◽  
Author(s):  
Ágnes Sonnevend ◽  
Akela Ghazawi ◽  
Rayhan Hashmey ◽  
Aliasgher Haidermota ◽  
Safinaz Girgis ◽  
...  

ABSTRACT The emergence of pan-resistant Klebsiella pneumoniae strains is an increasing concern. In the present study, we describe a cluster of 9 pan-resistant K. pneumoniae sequence type 147 (ST147) isolates encountered in 4 patients over nearly 1 year in 3 hospitals of the United Arab Emirates (UAE). The isolates exhibited highly similar genotypes. All produced chromosomally encoded OXA-181, and the majority also produced the NDM-5 carbapenemase. As with the previously described single isolate from the UAE, MS6671, the mgrB was disrupted by a functional, ISEcp1-driven bla OXA-181 insertion causing resistance to carbapenems. The mutation was successfully complemented with an intact mgrB gene, indicating that it was responsible for colistin resistance. bla NDM-5 was located within a resistance island of an approximately 100-kb IncFII plasmid carrying ermB, mph(A), bla TEM-1B, rmtB, bla NDM-5, sul1, aadA2, and dfrA12 resistance genes. Sequencing this plasmid (pABC143-NDM) revealed that its backbone was nearly identical to that of plasmid pMS6671E from which several resistance genes, including bla NDM-5, had been deleted. More extensive similarities of the backbone and the resistance island were found between pABC143C-NDM and the bla NDM-5-carrying IncFII plasmids of two K. pneumoniae ST147 isolates from South Korea, one of which was colistin resistant, and both also produced OXA-181. Notably, one of these strains was isolated from a patient transferred from the UAE. Our data show that this pan-resistant clone has an alarming capacity to maintain itself over an extended period of time and is even likely to be transmitted internationally.


2020 ◽  
Vol 2020 ◽  
pp. 1-8
Author(s):  
Changrui Qian ◽  
Xinyi Zhu ◽  
Junwan Lu ◽  
Kai Shen ◽  
Qianqian Chen ◽  
...  

To characterize the molecular structure of IncR plasmid-related sequences, comparative genomic analysis was conducted using 261 IncR plasmid backbone-related sequences. Among the sequences, 257 were IncR plasmids including the multidrug-resistance IncR plasmid pR50-74 from Klebsiella pneumoniae strain R50 of this work, and the other four were from bacterial chromosomes. The IncR plasmids were derived from different bacterial genera or species, mainly Klebsiella pneumoniae (70.82%, 182/257), Escherichia coli (11.28%, 29/257), Enterobacter cloacae (7.00%, 18/257), and Citrobacter freundii (3.50%, 9/257). The bacterial chromosomes carrying IncR plasmid backbone sequences were derived from Proteus mirabilis AOUC-001 and Klebsiella pneumoniae KPN1344, among others. The IncR backbone sequence of P. mirabilis AOUC-001 chromosome shows the highest identity with that of pR50-74. Complex class 1 integrons carrying various copies of ISCR1-sdr-qnrB6-△qacE/sul1 (ISCR1-linked qnrB6 unit) were identified in IncR plasmids. In addition to two consecutive copies of qnrB6-qacE-sul1, the other resistance genes encoded on pR50-74 are all related to mobile genetic elements, such as IS1006, IS26, and the class 1 integron. This study provides a clear understanding of the mobility and plasticity of the IncR plasmid backbone sequence and emphasizes the important role of ISCR in the recruitment of multicopy resistance genes.


2007 ◽  
Vol 51 (8) ◽  
pp. 3004-3007 ◽  
Author(s):  
Ying-Tsong Chen ◽  
Tsai-Ling Lauderdale ◽  
Tsai-Lien Liao ◽  
Yih-Ru Shiau ◽  
Hung-Yu Shu ◽  
...  

ABSTRACT A 269-kilobase conjugative plasmid, pK29, from a Klebsiella pneumoniae strain was sequenced. The plasmid harbors multiple antimicrobial resistance genes, including those encoding CMY-8 AmpC-type and CTX-M-3 extended-spectrum β-lactamases in the common backbone of IncHI2 plasmids. Mechanisms for dissemination of the resistance genes are highlighted in comparative genomic analyses.


2015 ◽  
Vol 59 (7) ◽  
pp. 4305-4307 ◽  
Author(s):  
Liang Chen ◽  
Nahed Al Laham ◽  
Kalyan D. Chavda ◽  
Jose R. Mediavilla ◽  
Michael R. Jacobs ◽  
...  

ABSTRACTWe report the first multidrug-resistantProteus mirabilisstrain producing the carbapenemase OXA-48 (Pm-OXA-48) isolated at Al-Shifa hospital in Gaza, Palestine. Draft genome sequencing of Pm-OXA-48 identified 16 antimicrobial resistance genes, encoding resistance to β-lactams, aminoglycosides, fluoroquinolones, phenicols, streptothricin, tetracycline, and trimethoprim-sulfamethoxazole. Complete sequencing of theblaOXA-48-harboring plasmid revealed that it is a 72 kb long IncL/M plasmid, harboring carbapenemase geneblaOXA-48, extended spectrum β-lactamase geneblaCTX-M-14, and aminoglycoside resistance genesstrA,strB, andaph(3′)-VIb.


Sign in / Sign up

Export Citation Format

Share Document